[서울대 수교과] (불연속)x(연속), 연속함수=0이어도 불연속이라고?
게시글 주소: https://orbi.kr/00065551925
-이전 칼럼 모음
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수I 삼각형 https://orbi.kr/00062038781
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수II 함수의 극한(1편) https://orbi.kr/00062106944
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수II 함수의 극한(2편)https://orbi.kr/00062139886
[서울대 수교과] 함수의 연속, 정의역이 핵심이다. https://orbi.kr/00065494895
안녕하세요! 저는 전교꼴찌 하다가 서울대 두 번 들어온 신동성 이라고 합니다. 오늘도 수학칼럼으로 돌아왔습니다!
오늘은 함수의 연속 2편입니다.
불연속함수와 연속함수의 곱함수의 연속성, 즉 간단히 말해서
(불연속)x(연속)의 연속성은 함수의 연속 단원에서 매우 자주 나오는 주제입니다.
그럴만 한 게,
두 연속함수는 더해도, 빼도, 곱해도, 나눠도(분모가 0이 아니라면) 무조건 연속이고,
두 불연속함수는 더하기, 빼기, 곱하기, 나누기 모두 직접 해봐야 하며,
불연속함수와 연속함수는 더해도, 빼도 무조건 불연속입니다.
그렇지만 (불연속)x(연속)은 연속이 되기 위한 아주 특별한 조건이 있어서, 그 조건만 체크하면 되죠?
많이들 알고 계시듯 그 조건은 바로, "불연속함수의 불연속점에서 연속함수의 함수값 = 0" 입니다.
그렇지만 이 조건은 사실 필요조건이기는 하지만 충분조건은 아니에요.
즉, (불연속)x(연속)에서 연속함수가 0임에도 불구하고, 곱함수 전체가 불연속일 수 있다는 거죠.
1. (불연속) x (연속) = (연속), "불연속함수의 불연속점에서 연속함수의 함수값 = 0"
우선은 혹시라도 저처럼 공부를 늦게 시작하신 분들을 위해, 이 내용부터 짚으며 시작해봅시다!
우선 (불연속) x (연속)의 간단한 예시를 살펴볼까요?
이렇게, 불연속함수 f(x)에 어떤 함수를 곱하냐에 따라, (불연속) x (연속)이 연속이 되기도 하고, 불연속이 되기도 하죠?
그런데,f(x)가 불연속인 x=1에 대해
곱함수가 연속인 위에서는 g(1) = 0이고
곱함수가 불연속인 아래서는 h(1) =/=0 임을 확인할 수 있어요.
눈치빠른 분들은 이미 아셨겠지만, (불연속) x (연속)이 연속이 되기 위해서는
불연속함수의 불연속점에서 연속함수의 함수값이 0이어야 해요.
가령, 불연속함수의 서로 다른 좌극한과 우극한에
연속함수의 같은 값을 곱해서
곱셈 결과가 같아지려면
곱하는 값이 무조건 0이어야 하지 않을까요?
수식으로 표현하자면,
이처럼, x=(알파)에서 불연속인 함수에 연속함수 g(x)를 곱해서 연속이 되려면,
연속함수의 함수값이 0이 되어야 함을 알 수 있어요.
그래서, 가령
이런 문제를 만나면
f(x)는 x=1에서만 불연속, 나머지에서는 무조건 연속
g(x)는 모든 실수 x에서 연속이므로
f(x)g(x)가 x=1에서만 연속이 되면 되고,
이때 (불연속)x(연속)이므로
g(1)=0
=1+k
-> k=-1
이렇게 결론을 낼 수 있어요.
수능이나 내신에 아주 자주 나오는 성질이니, 잘 기억해두세요!
2. (불연속) x (연속), 연속함수 = 0 이어도 불연속이라고?
이제 오늘의 메인 주제입니다!
위에서 말씀드린 내용까지는 모두들 알고 계실 거에요.
그렇지만, (불연속)x(연속)에서
불연속함수의 불연속점에서 연속함수의 함수값=0임에도 곱함수가 불연속일 수도 있어요.
그게 어떻게 가능하냐고요?
바로 이렇게요.
어떻게 된 일일까요?
분모가 0으로 수렴해서 전체가 무한대로 발산하는 불연속함수에서는
연속함수 = 0 임에도 불구하고
곱함수의 극한값이 존재하지 않을 수 있기 때문이에요.
바로 위의 예시가 딱 이 경우죠.
분모가 0으로 수렴해서 전체가 무한대로 발산하는 불연속함수 f(x)에 대해,
불연속함수 f(x)의 불연속점 x = 1에서 연속함수 g(x)가 g(1) = 0임에도 불구하고
곱함수의 분모에 여전히 (x-1)이 남아있어서, 곱함수가 무한대로 발산해버리는 것이죠.
그렇다면, 곱함수가 발산하지만 않으면 연속이 될까요?
이 예시에서는, 연속함수 g(x)에 (x-1)을 하나 더 곱해줬어요.
그러면 곱함수 f(x)g(x)가 x=1에서 1로 수렴하네요.
그러나, 극한값과 함수값이 달라서 여전히 불연속이 되었습니다.
(x-1)을 한 번 더 곱해보면 어떨까요?
드디어 연속이 되었네요.
눈치채신 분들도 있겠지만, 극한값 = 0이 되어야만 연속이 돼요.
왜 그럴까요?
이렇게 결론낼 수 있겠어요.
따라서, (불연속) x (연속) = (연속) 이려면,
단순히 "불연속함수의 불연속점에서 연속함수 = 0" 뿐 아니라
"곱함수의 극한값 = 0" 이 되어야 하고,
그러기 위해서는
"0을 만드는 인수를 곱함수의 분자가 분모보다 더 가져야" 하겠죠?
마지막으로, 이 개념을 활용해서 아주 빨리 풀 수 있는 문제를 살펴보고 마치겠습니다.
2021학년도 고3 7월 모의고사 12번입니다!
쉽죠?
이상입니다!
그리고 오르비학원에서 강의 진행합니다!
도형 관련 무료특강
수학II 미분 관련 무료특강
수학II4주짜리 개념+기출 특강
https://academy.orbi.kr/gangnam/teacher/464
많이 관심가져주시면 감사드리겠습니다 헤헤,,
공부에 도움이 되었다면, 추천팔로우댓글 많관부!!!!!
다음 칼럼 주제 추천이나 관련 질문 쪽지, 댓글도 아주 환영합니다!!!
수학 외적인 것도, 공부 외적인것도 ㄱㅊ습니당
이상입니다!ㅂㅂㅂ~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내가 최근에 모 유명 정치인 본 스토리를 올렸는데 어떤 애가 스토리 답장으로 총...
-
이훈식 박선 0
엄기은쌤 피크1 듣다가 너무 어려워서 드랍하고 이훈식,박선쌤 기출+ 솔텍,코어특강...
-
틀딱 전형 없나
-
ㄹㅇ
-
수의학과 과탐 선택 뭐해야하나여 생지 생각중인데 괜찮나여? 수학은 기하...
-
공부좀해보까 4
확그냥 지인선 풀어바?
-
수열의 극한 30번은 너무 어려움
-
나나닮은듯
-
공부 0
너무하기싫다
-
5덮 대학라인 15
4덮은 지방메디컬 몇개 되는거 있었는데 5덮은 서성한일듯 ㅋㅋ..
-
늘긴했네 1은 언제받아보냐
-
5덮 미적 4
88(14찍맞, 21,29,30) 처음으로 22수열 맞았다 ㅠㅠ 시발 아니 여거 왤케 어려워여
-
가고시팓
-
무보 1 따볼 수 있는건데 이건 좀 아쉽다
-
왜 없어진거야
-
ㅇㅇ 3
ㅇㅇㅇ
-
발바닥 핥기 0
미소녀 발바닥 할짝할짝
-
미지수 개수랑 조건 개수 비교는 매번 빼먹는 거 같네... 모든 조건을 다 양살함...
-
누굴 뽑아야할지 고민이노
-
구라임..
-
28일 오전 서울역 대합실에서 시민들이 이준석 개혁신당 대통령 선거 후보의 전날...
-
진짜 가끔 보이나요? 아니면 은근 흔한가요
-
언매 94 어쨌든 무보 1이죠? 넌유기다ㅋㅋㅋㅋㅋㅋㅋㅋ
-
무보 41311 1
국어 나쁜넘... ㅗ
-
생각보다 높게 나왔네
-
화낼번햇네 6
아샷추에 샷을 까먹고 안넣어..? 나 진자 이런건 못참거든
-
1등급줄줄알았는데 2등급한가운데네
-
더프 과탐 1
매번 왜 물리를 잘보고 항상 화학을 망함
-
25 수능 엄마 백분위 88이고 독서에 약한것같습니다 25 3모, 5모, 6모 다...
-
16대 대선 이회창 vs 노무현 지금 대선처럼 기호 1번이 지지율 압도였음 노무현...
-
국어 현재 낮3 1
수능 안정1 된다 vs 안된다 탐구 하나도 안함 수학 영어는 1걸침
-
온라인응시자도 포함된건가요?
-
2-3 차이 어느정도 나나요 문과기준
-
있으심분
-
6모대비 서바 0
1회 국어 등급컷이 어떻게 되나요?
-
공통 2틀이면 무보 1컷 가능한거임? 아니면 얄짤없이 무보2인가
-
그동안 생각한 인생이 망했다는 느낌이랑 다른 단계의 생각임 이렇게 멍청한 남들만큼도...
-
5덮 1
무보 12221 보정 11211 6모에서 이렇게만 나와주면..!
-
크아아악 2
군생활 녹이기..
-
국어잘하고싶다 0
ㄹㅇ
-
더프 무보 1
31243 에라이 ㅅㅂ ㅋㅋ 근데 무보랑 실수능 어느정도 비슷한가 국수는 그렇다쳐도...
-
성분명 처방으로 품절약 사태 해결… 공적 전자처방전 구축 가장 눈에 띄는 부분은...
-
이거사도되나 3
진자 어제부터 고민이내..
-
난 왜 개념도 기억 안날거같지
-
아직도 의문임 졸렸던거도 아닌데
-
보정 42313
-
오르비 하이 4
요즘 열심히 하는중임 흐흐 막판에 극한으로 끌어올리기
-
생명 47->41은 머선일인고.... 고이긴했구나;;
-
독서 -4까진 행복했다 문학 -12 ㅅㅂ
첫번째 댓글의 주인공이 되어보세요.