[서울대 수교과] (불연속)x(연속), 연속함수=0이어도 불연속이라고?
게시글 주소: https://orbi.kr/00065551925
-이전 칼럼 모음
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수I 삼각형 https://orbi.kr/00062038781
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수II 함수의 극한(1편) https://orbi.kr/00062106944
[서울대 수교과] 해설지 없이는 못 푸는 그대에게, 수II 함수의 극한(2편)https://orbi.kr/00062139886
[서울대 수교과] 함수의 연속, 정의역이 핵심이다. https://orbi.kr/00065494895
안녕하세요! 저는 전교꼴찌 하다가 서울대 두 번 들어온 신동성 이라고 합니다. 오늘도 수학칼럼으로 돌아왔습니다!
오늘은 함수의 연속 2편입니다.
불연속함수와 연속함수의 곱함수의 연속성, 즉 간단히 말해서
(불연속)x(연속)의 연속성은 함수의 연속 단원에서 매우 자주 나오는 주제입니다.
그럴만 한 게,
두 연속함수는 더해도, 빼도, 곱해도, 나눠도(분모가 0이 아니라면) 무조건 연속이고,
두 불연속함수는 더하기, 빼기, 곱하기, 나누기 모두 직접 해봐야 하며,
불연속함수와 연속함수는 더해도, 빼도 무조건 불연속입니다.
그렇지만 (불연속)x(연속)은 연속이 되기 위한 아주 특별한 조건이 있어서, 그 조건만 체크하면 되죠?
많이들 알고 계시듯 그 조건은 바로, "불연속함수의 불연속점에서 연속함수의 함수값 = 0" 입니다.
그렇지만 이 조건은 사실 필요조건이기는 하지만 충분조건은 아니에요.
즉, (불연속)x(연속)에서 연속함수가 0임에도 불구하고, 곱함수 전체가 불연속일 수 있다는 거죠.
1. (불연속) x (연속) = (연속), "불연속함수의 불연속점에서 연속함수의 함수값 = 0"
우선은 혹시라도 저처럼 공부를 늦게 시작하신 분들을 위해, 이 내용부터 짚으며 시작해봅시다!
우선 (불연속) x (연속)의 간단한 예시를 살펴볼까요?
이렇게, 불연속함수 f(x)에 어떤 함수를 곱하냐에 따라, (불연속) x (연속)이 연속이 되기도 하고, 불연속이 되기도 하죠?
그런데,f(x)가 불연속인 x=1에 대해
곱함수가 연속인 위에서는 g(1) = 0이고
곱함수가 불연속인 아래서는 h(1) =/=0 임을 확인할 수 있어요.
눈치빠른 분들은 이미 아셨겠지만, (불연속) x (연속)이 연속이 되기 위해서는
불연속함수의 불연속점에서 연속함수의 함수값이 0이어야 해요.
가령, 불연속함수의 서로 다른 좌극한과 우극한에
연속함수의 같은 값을 곱해서
곱셈 결과가 같아지려면
곱하는 값이 무조건 0이어야 하지 않을까요?
수식으로 표현하자면,
이처럼, x=(알파)에서 불연속인 함수에 연속함수 g(x)를 곱해서 연속이 되려면,
연속함수의 함수값이 0이 되어야 함을 알 수 있어요.
그래서, 가령
이런 문제를 만나면
f(x)는 x=1에서만 불연속, 나머지에서는 무조건 연속
g(x)는 모든 실수 x에서 연속이므로
f(x)g(x)가 x=1에서만 연속이 되면 되고,
이때 (불연속)x(연속)이므로
g(1)=0
=1+k
-> k=-1
이렇게 결론을 낼 수 있어요.
수능이나 내신에 아주 자주 나오는 성질이니, 잘 기억해두세요!
2. (불연속) x (연속), 연속함수 = 0 이어도 불연속이라고?
이제 오늘의 메인 주제입니다!
위에서 말씀드린 내용까지는 모두들 알고 계실 거에요.
그렇지만, (불연속)x(연속)에서
불연속함수의 불연속점에서 연속함수의 함수값=0임에도 곱함수가 불연속일 수도 있어요.
그게 어떻게 가능하냐고요?
바로 이렇게요.
어떻게 된 일일까요?
분모가 0으로 수렴해서 전체가 무한대로 발산하는 불연속함수에서는
연속함수 = 0 임에도 불구하고
곱함수의 극한값이 존재하지 않을 수 있기 때문이에요.
바로 위의 예시가 딱 이 경우죠.
분모가 0으로 수렴해서 전체가 무한대로 발산하는 불연속함수 f(x)에 대해,
불연속함수 f(x)의 불연속점 x = 1에서 연속함수 g(x)가 g(1) = 0임에도 불구하고
곱함수의 분모에 여전히 (x-1)이 남아있어서, 곱함수가 무한대로 발산해버리는 것이죠.
그렇다면, 곱함수가 발산하지만 않으면 연속이 될까요?
이 예시에서는, 연속함수 g(x)에 (x-1)을 하나 더 곱해줬어요.
그러면 곱함수 f(x)g(x)가 x=1에서 1로 수렴하네요.
그러나, 극한값과 함수값이 달라서 여전히 불연속이 되었습니다.
(x-1)을 한 번 더 곱해보면 어떨까요?
드디어 연속이 되었네요.
눈치채신 분들도 있겠지만, 극한값 = 0이 되어야만 연속이 돼요.
왜 그럴까요?
이렇게 결론낼 수 있겠어요.
따라서, (불연속) x (연속) = (연속) 이려면,
단순히 "불연속함수의 불연속점에서 연속함수 = 0" 뿐 아니라
"곱함수의 극한값 = 0" 이 되어야 하고,
그러기 위해서는
"0을 만드는 인수를 곱함수의 분자가 분모보다 더 가져야" 하겠죠?
마지막으로, 이 개념을 활용해서 아주 빨리 풀 수 있는 문제를 살펴보고 마치겠습니다.
2021학년도 고3 7월 모의고사 12번입니다!
쉽죠?
이상입니다!
그리고 오르비학원에서 강의 진행합니다!
도형 관련 무료특강
수학II 미분 관련 무료특강
수학II4주짜리 개념+기출 특강
https://academy.orbi.kr/gangnam/teacher/464
많이 관심가져주시면 감사드리겠습니다 헤헤,,
공부에 도움이 되었다면, 추천팔로우댓글 많관부!!!!!
다음 칼럼 주제 추천이나 관련 질문 쪽지, 댓글도 아주 환영합니다!!!
수학 외적인 것도, 공부 외적인것도 ㄱㅊ습니당
이상입니다!ㅂㅂㅂ~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내아이민이어때서 0
어떻긴 틀딱..
-
3월 더프급이노
-
허접아
-
레어 뺏김 0
-
안녕하세요. ‘수능을 수능답게, 수학을 쉽게 보는 방법’의 ‘이다정’입니다. 이제...
-
네
-
오늘은 잠을 너무 못자서 좀 일찍 왔네용
-
난 운전강사님이랑 봤네^^
-
너무 한산해짐.. 6모까지 존버 ㄱㄱ
-
댓으로 신청좀요 아니면 원하는 주제라도 써주십셔 지금 교재 작업 하다가 약간...
-
소개좀
-
그냥 우울턴 올 때 마다 안쓰러워 뷰였는데 이젠 공격성이 불특정 외부대상까지 뻗치네
-
볼거냐? ㅈㄱㄴ 수특 레벨3도 있음
-
삶이 너무 힘들다 10
155cm 70kg인데 머리도 굳었고 잘하는 게 없는 채로 나이만 먹는다
-
어떤가요 컴팩트해서 고려중인데.. 1목표에요
-
좋아하는 일과 잘하는 일 사이에는 분명한 간극이 있다. 하나는 마음이 먼저...
-
아 씨발 0
골반이 왜 갑자기 아프지
-
ㄹㅈㄷ던데
-
자작문제 투척 6
맞춰주세요
-
어떤싸움을 하고 계신겁니까…..특히 화생1,2 화2생1생2는 사람이 시간안에 다...
-
순서대로 하루에 시간을 많이 쓰는 욕구 순위에요
-
^^... 이렇게 진도가 안나가냐 미치겠다 ㄹㅇ
-
확통런 0
지금 4월인데 미적 개념 반정도함 확통런 할까요 (수학 1등급목표)
-
견적서 보낼 때마다 돈 드는데 뭐랄까 그냥 말 한마디만 삐끗해도 그냥 고갱님이 읽씹...
-
근데 나 정치인아무도 모르는데 나노무현밖에 몰르는데
-
너무 어려운데
-
지금 시기에 풀 수 있는 국어 문제집 추천해줘 마냥 수능기출이나 수특만 풀기보다...
-
근데 계엄이 100프로 윤석열 잘못이라는 사람들은 무지한거임? 8
헌재의 판결문을 보면 민주당의 일반적 예산삭감,줄탄핵으로 윤통이 위기살황이라...
-
사실 드라마 합응 때 민족의 아리아 장면 끝나고 연대 쪽 단원들 표정 굳어있고...
-
올오카 컨텐츠 전체적으로 밀렸는데요 다 하기 너무 벅차서요 ㅠ 엮어읽기는 다 하되...
-
정법: 3모 14번였나 하나틀려서 48점 백분위 99 개재밌게 공부했었으나...
-
2025, 2024학년도 상지대 입시결과(수시_한의대 포함) 1
2025, 2024학년도 상지대 입시결과(수시.. : 네이버블로그
-
현우진은 수2 극한상쇄해설 이후로 믿음이 깨졌고 이창무 생각중인데 괜찮나여?...
-
독재 쌤한테 타임랩스 찍으면서 공부해도 되냐 물어보는 거 오바임? 2
우리 독재가 와파도 안 막혀있어서 1-3월엔 열심히 하다가 4월 되니까 죽을 맛임...
-
무한 로딩 걸리면서 질문으로 돌아가기 뜨는데 미치겟넹
-
교사경도 좋아요 마더텅 있는줄 알았는데 찾아보니까 없더라고요
-
새회사 입주하셧네 아직 일 할 마음은 있다는건가
-
수면욕>>식욕>$^£$>성욕
-
美 증시 이틀 만에 1경원 증발했는데…트럼프 “버텨라” 4
4월 4~5일 시총 6조6000억달러 증발 트럼프 취임 후로는 11조1000억달러...
-
마이스타튁 클래식 같은데 부들부들한게 꼭 두부같다 중간 끝나면 어떻게든 졸라서 수성펜 산다
-
간만에 머리썼더니 배고파요
-
25/04/05 1일차 기본 광질하고 다이아 풀셋 25/04/06 2일차 본격적인...
-
1. 치약이 디저트로 둔갑한 사건 민트초코는 마치 치약을 초콜릿에 섞은 듯한 맛이라...
-
수학 쉬운4점 20번 전에 배치된 문항들 수준의 문제집 추천받습니다. 2등급 목표라...
-
엄청 좋아했는데 1
안 좋아한다고 생각하니까 설레는 말 들어도 그냥그래요
-
이거버그아니에요??
-
악필이라 여기다 서술할게요 1단계 다항함수 이므로 우리는 식을 임의로 설정할수있다...
-
하루종일 오르비 똥글 리젠 채우는 오르비 일반의지mk.1인 나도 옯스타는 좀 빡센데
-
문학 강의 내용은 ㅆㅅㅌㅊ인데 구체적으로 언급하기 위험한 이런 저런 특징들 넘 거슬리네
첫번째 댓글의 주인공이 되어보세요.