예시 문제로 보는 잘못된 기출 공부 방식(23년 6월 14번) - 혹시 이렇게 하고 계신가요?
게시글 주소: https://orbi.kr/00063946610
잘못된 기출 공부 vs. 올바른 공부
안녕하세요
기출 공부를 어떻게 해야할지에 대해 쪽지가 너무 많이 와서
생각나는대로 예시를 보여드리려 합니다
여러분에게 익숙한 문제로 예를 들어볼게요!
2023년 6월 시행 속도가속도 문제입니다.
이 문제를 함께 풀어볼게요
우선 속도 그래프가 4차로 주어져 있습니다
수직선에서 운동방향은 v의 부호가 결정하죠?!
그래서 v가 t축을 뚫고 지나가는 순간이 운동방향을 바꾸는 순간입니다
(추가로 v는 위치 x의 도함수이므로 위치 x의 극점인 순간이 운동방향을 바꾸는 순간으로 해석할 수도 있습니다)
문제에서 운동 방향을 한 번만 바꾸도록 하라고 했으니,
v(t)의 그래프가 그리고 싶어야 하고
v(t) 그래프가 t축을 뚫고 지나가는 순간이 t=0 이후에 한 번만 있어야 합니다!!
즉, 접하는 순간이 많아야 한다고 생각이 들 수 있겠네요
이게 이 문제의 기본적인 틀인데
공부 할 때 여러분의 잘못된 사고 메커니즘과 올바른 사고 메커니즘을 알려드릴게요
빙의 한 번 해보겠습니다
(최악)
아 이거 알아
a=1 일 때 위치 변화량(정적분) 최대임
v(t) = -t(t-1)^2(t-2) 적분하면 답 나옴
~~계산
끝!
아 역시 난 잘해. 풀이랑 답 상황 기억나니까 지루하네, 나 기출은 이제 그만 풀어도 될 듯(ㅎ,,)
=> 대부분 이러십니다
(최악은 아니지만 부족함)
운동 방향을 바꾼다는 표현이 나왔으니 난 뭘 생각해야하지?
-> v(t)의 부호가 바뀌거나, x(t)가 극점을 갖거나였지?
그런데 그게 한 번만 있으려면?

사차함수 v(t)의 그래프가 대충 이렇게 되어야 할 것 같은데?
그런데, 0~2 정적분 값이 최대이려면 다 양수인 가운데 케이스가 유리하겠네?
a=1일 때 최대일 거 같긴 한데.. 일단 구해보자!
~~계산 => 답에 있음
오키 맞겠지 뭐 => 맞음 => 추가 생각 없이 넘어감(그나마 2등급까지 오를 가능성 있음)
(good)
운동 방향을 바꾼다는 표현이 나왔으니 난 뭘 생각해야하지? -> v(t)의 부호가 바뀌거나, x(t)가 극점을 갖거나였지?
그런데 그게 한 번만 있으려면? 사차함수 v(t)의 그래프가 대충 이렇게 되어야 할 것 같은데?


그리고 이건 기출문제들 중 극점을 한 번만 갖을 조건하고도 연관이 있네?
속도 가속도의 형식만 빌렸을 뿐, 사실상 도함수를 활용해 원함수의 개형을 추론하는 문제랑 요구하는 능력이 같구나
평가원이 이걸 자주 강조하네!
그럼 이 세가지 케이스 중 정적분 값 최대는 언제일까?
음.. 양수인 부분만 있을 때가 최대일 것 같기는 한데 혹시 모르니 다 계산해보자
~~(3가지 케이스 모두 계산)
아 역시 양수인 부분이 최대네!
(very good)
(good) 상황처럼 풀었다고 가정
(+)
1. v(t)의 개형에 따라 운동 방향을 바꾸는 횟수가 달라질텐데 이 개형은 a에 따라 달라지겠네?
=> a에 따른 운동 방향 바꾸는 횟수를 새로운 함수 g(a)로 정의할수도 있겠다.
평가원이 이런거 좋아하니까.
한 번 a의 범위(구간)에 따른 g(a)를 생각해보자
=> a에 따른 모든 그래프 케이스 그려보고 케이스별 운동 방향 바뀌는 횟수 몇 번인지 읽어보는 훈련을 함
2. 내가 시험장에서 세 가지 케이스의 정적분을 따로 계산해서 비교해버리면
정답에 확신을 가질수는 있겠지만 너무 시간이 오래 걸리네.
그렇다고 최대일 것 같은 순간이 선택지에 있는데 그걸 찍고 넘어갔다가
다른 상황이 최대여버리면 틀리게되니까 확인을 안하기도 낭패일 것 같고..
조금 더 정적분 값이 최대인 케이스가 언제인지 빠르고 깔끔하게 확인할 방법이 없을까?
=> 고민 + 선생님께 질문해서 케이스별 빼기함수의 정적분으로 이해하면 된다는 것 이해
=> 아! 맞아, 무언가 크기 비교를 할 때는 빼보는 것이 기본 개념이었지!!
교과 개념이 여기서 또 활용되네.
이런 아이디어에 대해 뼈에 새기자! => 진짜 새겨짐
3. 정적분 계산할 때 평행이동해서 더 쉽게 계산하는 것을 배웠었는데 혹시 활용할 수 있는 상황인지 고민해볼까? => 사차 함수 대칭성 활용해 평행이동으로 더 쉽게 계산 => 상황을 보는 눈 길러냈음
(very good) 상황은 제가 재수 할 때 실제로 사용했던 방법입니다.
물론 지금 저의 기준으로 생각했을 때는 그 때의 저도 빈틈이 많았으나(그래도 100점은 계속 나왔습니다)
적어도 저런 방향으로 공부하려고 수학, 과탐 모두 노력했었습니다.
여러분, 기출은 이렇게 공부해야 합니다.
신기하게도 이렇게 공부하면 두 번을 보든 세 번을 보든 같은 문제를 공부하는데도 새로운 관점이 다양하게 보이고 문제가 재해석 되는 경우도 많습니다.
특히 어려운 문제일수록 새로운 관점이 보여서 무기가 많아져요.
이게 다른 풀이를 배우거나 들어봐서 “이런 풀이로도 풀 수 있다”를 아는 것과는 차원이 다릅니다.
나의 실력이 쌓이면서 새로운 시야가 트인 것이거든요.
요즘 기출 공부를 강조하는데, 어떻게 공부해야 하는지 여러분에게 와닿게 설명할 방법이 무엇일까 고민하던 차에 조깅하다가 갑자기 이 문제로 설명하면 좋겠다고 생각이 났네요.
또 생각나면 다른 문제로 적으러 올게요 :)
다들 본인이 위의 네 가지 경우 중 어디에 가까운지 생각해보시고 잘 공부해보시기 바랍니다
0 XDK (+1,000)
-
1,000
-
좋아요 0 답글 달기 신고
-
골좀넣어봐
-
bxtre.kr/
-
인생 진짜 좃된거같다 그걸 깨달음 놀고있을때가 아닌거야
-
여기 물리 많이쓰이나요? 로드맵에는 딱히 물리같은거없고 코딩 소프트웨어...
-
그날 해야 하는 공부들이 있는데 다 못 끝냈을 때의 스트레스가 너무 심해요. 생활...
-
전문의 따고도 남을시간 아닌감…
-
D-210 0
영어단어 수특 1~13강 복습 사회문화 일탈이론 복습 관료제,탈관료제 복습 수학...
-
bxtre.kr/
-
얼버기 4
얼리버드가 벌레를 잡는다
-
자야지 3
-
돌멩이는 신임 4
돌멩이: 수익률 0%정백: 수익률 -9.2% ㅅ ㅣ발
-
윤사 생윤만 봐도 너무 어렵던디 그리고 경우의수 잼병이라 확통은 ㄹㅇ 엄두도...
-
6년동안 읽은책 저거밖에없는데 많이심각한거임?
-
전교권 n수생 대치동 과학고 -> 과탐 1~3등급 다 차지함?
-
다음 주 화수목금 하루 한 과목씩 10시에서 1시 사이에 치는데 오후 5시 취침...
-
bxtre.kr/
-
공대는 물리가 필수인건 다들 알고 있을거고 쨋든 현역으로 공대를 꼭 가고 싶다면...
-
아무거나 질받 ㄱㄱ
-
얼마를 잃은거지 ㅅㅂ..
-
얼버잠 1
네
-
오르비 안녕히계세요 11
2000모으고오겟습니다 화이팅
-
20일에 혼자 머라도 하고 집와야겠다
-
아직까지 못 자고 있냐..
-
미대입시해서 평소에 미술학원만갔다오고 뻗어서 방학때도 하나도 안하기도했고 고1부터...
-
외국인도 있네
-
좀비 등장
-
자취러 여친생기면 꿀팁 22
가을에 한 11000-12000원이면 흰다리새우 생물로 1키로 사는데 한...
-
작년보다 어려운 시험지 기대하겠습니다
-
8시 기상 도전 2
실패시 오만덕 뿌림
-
스케줄 비워놨으니까 딴데 가지마
-
평범하게 살고싶은 밤인데
-
불면증 아 4
기껏 11시반에 잠들었는데 말짱히 깨는거 뭔데
-
잼얘할 사람 7
흐흐
-
거래대금 순위가 이게 맞냐고 3배 레버리지 3배 곱버스가 1,2등하는건 너무하잖아...
-
오늘1교신데 6
이번학기첫자체휴강각인가
-
왜 아빠가 더 노력하지 않는걸까..
-
[13/15문제] 5번 밀도는 심층으로 갈수록 지속적으로 증가한다는 것도 숙지 못함...
-
내 꿈은 5
롤드컵 우승임 반농담 반진담임
-
반박시난봉꾼
-
땅울림할게요 8
민족말살정책
-
오늘 일 클래스 1주차 강의 듣고있는데 "이정도는 다 되잖아" "당연히 이거지"...
-
올해 두 번째로 덮치는거에요?
-
지금은 요리가 취미인 의사가 되고싶어
-
B의 Ep랑 Ek랑 비율 관계가 10대 2고, B와 A 질량비 2대 3이니까 A...
-
1) 코구선수 2) 자택경비원
-
28예비 18번 같은거는 f-x가 g-x로 나누어떨어지는걸 눈치까라는말인데 그럼...
-
감기인가 코로나인가 구분이 안 가네 학원 일 할 땐 마스크 끼긴 했는데 아 설마
-
텐서 뭔데 대체 9
텐서라는게 뭐임 대체
-
5년전 메타가 40분/25분 이고 맞나연?