참고) 230615를 눈풀하는 엄밀한 방법
게시글 주소: https://orbi.kr/00063649578
메인글 보고 급하게 한 번 다시 써 보겠습니다. 23학년도 6월 평가원 모의고사 15번 문제입니다.
이 문제를 간편하게, 그렇지만 엄밀하게 눈풀할 수 있는 방법이 있습니다.
수열의 생김새를 보면 a2는 a1에 1/(k+1)을 더하고, a3은 a2에 1/k를 뺌을 알 수 있습니다. 여기서 이것이 반복된다고 생각해 볼 수는 있습니다.
그렇지만 증명하지 않고 넘어가면 제대로 된 풀이가 아니죠.
왜 저렇게 되는지는 매우 간단합니다.
보조정리라 할 것까지도 없습니다. 그냥 통분해서 정리하면 보일 거예요.
그리고 같은 경우에서
이 성립함은 더 쉽게 알 수 있습니다.
그렇다면 이제 어떻게 할 건지 감이 오시나요?
수학적 귀납법과 비슷한 방법으로
이라는 사실을 알 수 있습니다. (2k+1)이 수열의 주기의 배수가 된다는 것이죠.
그리고 여기서 구할 수 있는 k가 가능한 모든 k라는 걸 증명하겠습니다.
어렵지 않아요. 그냥 k와 k+1은 서로소임을 기억하면 됩니다.
그러면 저 점화식에서 (2k+2)번째 항이 1 다음으로 최초로 0이 되는 항임을 알 수 있습니다.
즉 (2k+1)이 이 수열의 주기라는 것이죠!
(4k+3), (6k+4), (8k+5)... 번째 항이 0이면서 그 항들만 0임을 알 수 있습니다.
제가 풀었을 때(현장은 아니었지만) 이 풀이를 바로 떠올렸습니다.
그렇다면 풀이는 이 정도로 축약할 수 있습니다.
1. 이 수열은 0 이하면 1/(k+1)을 더하고 양수에서 1/k을 빼는 수열이다.
2. 그런데 가능한 모든 경우에 대해 1/(k+1)을 더한 후에는 양수, 1/k을 뺀 수는 음수가 된다.(보조정리 참고)
3. 따라서 이 수열의 주기는 2k+1이다.
4. a_22가 0이므로 (2k+1)이 21의 약수이다.
5. 따라서 가능한 모든 k는 1, 3, 10이므로 합은 14이다.
떠올리기는 쉽지 않지만 생각만 한다면 1분 안에 푸는 것도 무리는 아닙니다.
유익하셨기를 바라면서 마치겠습니다! 좋아요와 댓글 환영합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시대인재 수과학 브릿지모의고사와 브릿지전국모의고사중에 시간없을때 둘중 하나만...
-
ㅇㅂㄱ 1
-
5.18 민주화운동 45주년 기념
-
지하철 놓침 2
ㅅㅂ
-
“좋은 기업 사서 평생 보유”… 가치투자 원칙 남기고 떠나는 전설[글로벌 포커스] 0
세계 최고의 투자자 중 한 명인 워런 버핏 미국 버크셔해서웨이 회장 겸...
-
드릴수1하사십 0
드릴 수1 정답률 90퍼정도되는데 하사십으로 넘어가도 되려나요 아님 이로운 풀고 하사십해볼까요 ㅠ
-
지하철 놓칠 뻔 2
휴
-
의대열풍으로 같이 휩쓸려서 입결이 올랐다고봄 아니면 진짜 수의사가 저만큼 메리트가있어서라고봄
-
원합니다. 2
내가살기위해서
-
새르비 맞팔구 3
극도록 퇴화한 레버기는 얼버기와 구분할 수 없다
-
내 눈 ㅠㅡㅠ
-
3모 13315 5모 14311 탐구 공부가 어느정도 끝나서 수학을 하고있는데...
-
수능 다시 준비하면서 독학으로 하다보니 뭔가 스트레스 받고 집중 안되고 머리...
-
우선 등급은 작수기준 국어(화작) 4 수학(미적) 3(공통2틀,미적4틀) 영어...
-
딱히 자취한다는 생각이 안듦... 그냥 기숙사 사는거같음
-
정시인데 등급어그로꾼 댓글에 요즘 입시 모르는 나형충 등장 물론 작년 설경제는 빵이긴 했음
-
초딩 6년전체 따 당하고 나서 악몽도 자주꾸고 늘 불안해하고 친구 0명 자주울고...
-
오르비 안녕히주무세요 12
-
이래도 되는걸까.. 내 모든 걸 알고있음
-
새벽 드라이브 겸 스윽 가볼까
-
극단적인 곳은 성비 9:1인 이유가 있음 한의사 일 자체가 ㅈㄴ 힘든 (말그대로...
-
옵붕아 자? 27
.
-
D-41ㅇㅈ 4
내일 더 빡시게
-
속상해요... 0
속상하고 분하고 화나요..
-
일단 나부터.
-
요즘엔 오르비가 0
일기장이 되어버림
-
그럼에도 행복하게 살아야지
-
ㅋㅋ
-
최저러 공부법 1
3과목 국영탐(1개) 준비하면 되는데 하루에 한과목씩 돌아가면서 뿌실까요 아니면...
-
더데유데 1
더데유데 어떰?? 3모대비 풀었을 때 너무 실망해가지고;;; 더데유데 좋다는 소리가...
-
벌써몇달짼가~ 1
-
지금 역대급임
-
공부하는 와중에도 무의식적으로 다른 생각함 어젝밤에 본 웹툰 생각이남 집중이 잘...
-
자러갈지도 1
자러갈지도
-
오래된생각이야
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 8
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
인강은 쓸모없다. 13
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
-
답 470

그래도 저런 의심해 보는 건 나쁘지 않죠특히 실전에서 시간 부족할 때는 가능성 높은 걸로 찍어서 맞추면 그만이니까요
전 저 때 반복 아니면 문제 왜 냄? 이라는 마인드로 풀었었던 기억이 ㅋㅋ

특수 케이스
무슨 중국인의나머지정리? 라는걸로 ㅈㄴ 일반적인 증명도 있다고 어디서 들엇는데
중국인의 나머지 정리는 어려운 건 아니고 재밌어요! 합동식 개념만 알면 봐도 좋을 거예요!기초 정수론인데 확장해서 추상대수학에서 쓰기도 한답니다!
정수론 재밌어했던 게 작년 6모나 수능 15번을 쉽게 푸는 데 도움을 준 것 같아요!
ㄱㅁ

뀨뀨대 ㄱㅁ저 문제 때문에 작년 6모 끝나고 정수론 도움된다고 약팔이한 기억이 있네요

결과적으로 수능 15번 보면 도움이 됐던...혜안이 대단하십니다 선배님
아!!!! p/k+1 - q/k 꼴에서 p=q=1 해보고, 음수니까 p에 2 넣고, 그럼 양수 되니까 q=2 넣고..를 반복해서 p=k+1,q=k일 때 an=0을 만족하는거군요 신기해요

현장에서 떠올리긴 힘들었을 수도 있다 생각하지만 저는 집모로 풀 때는 떠올려서 풀고 감탄했어요아마 정수론이 도움이 되긴 한 것 같습니다 ㅋㅋㅋㅋ
저는 조금 더 간단하게 생각했던 것 같습니다.
21의 약수를 떠올리며 케이스분류해서 1분안에 풀리더라구요!

떠올리기 어려워하는 경우도 있는 것 같더라고요저건 설명하려고 일반화한 거에 가까운데 풀 때는 한 10초 정도만에 풀긴 했죠
저 이거 작년부터 이해 못하고 있었는데 지금 이거 보고 이해함뇨 ㄱㅅ
그런데, 보조정리가 성립하려면 k가 n보다 커야만 하지 않나요?
k가 n 이상이어야 해요!
한 주기 내에서 볼 때를 기준으로 생각했더니 급하게 쓰느라 실수한 것 같네요...