2023 수능 수학 손풀이 (공통, 확통, 미적)
게시글 주소: https://orbi.kr/00062878683
2023 수능 수학 손풀이_울고있는치타.pdf
다들 스캔본은 별로라해서 패드를 샀습니다... 이거하려고...
5월 모의고사 갑자기 하면 글씨체 난리날 것 같아서 연습하려고 해봤어요!
패드에 글쓰는게 쉬운게 아니네요 ㅜㅜ 꿀팁 있으신가요
피드백 환영합니다! 저도 지금 다시 보는데 글씨가 많이 작은 것 같네요 ㅎㅎ;
공부에 도움되길 바라겠습니다!
5월 모의고사 손풀이 기다려주세영
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
260등 정도임 정확히 260은 아니고 260정원인데 점공률 50프로 정도던데 ㅠㅠ...
-
영어 지원 좀 해라 ㅡㅡ
-
AI 폼 미쳤다 0
강아지 ㄱㅇㅇㅇㅇㅇㅇ
-
이제 청소년은 이미 졸업 했고 몇달 있으면 미성년자 딱지도 떼는데 내가 언제까지 말...
-
그냥 하루에 10시간 이상 공부시간 박으면 그냥 방구석에서 메가스터디 인강 강사들...
-
상위권들한테 공부법 물어보면 자기는 별로 특별한 게 없다고 함 들어보면 다 거기서...
-
제발요
-
ㅎㅇ 1
ㅎㅇㅎㅇ
-
술집 알바하는데 1
이렇게 추우면 오늘 손님 많이 안 오겠지??
-
집에서 나는 22
-
대신 시에스타를 드릴께요
-
이거 허위표본일 가능성 있나요? 제발 그랬으면 좋겠는데
-
그해 수능은 치러 가야지 히히
-
왜 to v와 ing를 반대로 해석하냐고 왜 영어를 더 싫어하는거지 수학이 훨씬 joat인데
-
닥전임 닥후임
-
재밌는 드라마 추천 점
-
노곤하구마이 2
호에에
-
25수능 화작 응시 원점수 98점 받았습니다 정석민 비독원 완강 후 파이널 커리...
-
미적분 인강 1
현우진 시발점 들으려고 하는데 학원 안 다니면서 충분히 가능할까요?? 미적분이란...
-
혹시 팀플 많아요? 팀플 진짜 개극혐인데 하..
-
딱 원하는 것만 요리조리 섞어주네 하늘을 달리다 비긴어게인 박하사탕 비긴어게인...
-
할일 못끝내면 인증함.
-
저메추 미리 받아요
-
경북대 합격생을 위한 노크선배 꿀팁 [경북대 25] [기숙사] 0
대학커뮤니티 노크에서 선발한 경북대 선배가 오르비에 있는 예비 경북대학생, 경북대...
-
근데 이거 작가 양반 ㅈㄴ 악질인 게 7월에 복귀한다 해 놓고 2025년이 됐는데도 안 옴
-
분명 100년만 기다리면!!!
-
경희대 아시는분?
-
재수 반수 할때 3
평가원 말고 교육청 모의고사 하심? 그냥 풀기만 하나 아니면 피드백ㄲㅏ지?
-
우선 저번 글에서도 말했지만 전 수능을 몇번 본 사람입니다 솔직히 저도 수능으로...
-
SKY아래부터
-
저능하도다.. 2
테스트 개망햇습니다 갑자기 내가 수능 어케 이정도로 봤지?하면서 대견해짐 삼수 못하긋다…
-
전 해법문학 여러분들은? 컴팩트하게 할만한 교재 있을까요?
-
ㅁㅌㅊ 0
학점보다 높아서 자랑좀 함
-
고1 3모를 1컷 간당으로 틀려놓네....ㅁㅊ 역시 수능끝나고 국어 혐오증 생겨서...
-
중앙대 로스쿨은 왜 동급간 대비 아웃풋이 박은거임? 0
로스쿨 명문 아닌가??
-
검사임용? 헌재연구원? 변시합격률?
-
냠무냠무
-
기만인가..? 2
-
행복한인생이네요 1
╰(*´︶`*)╯♡
-
컽
-
실제하고 잘 맞아요?
-
장이 안좋아서 주 1회는 자습하다 하루에 몇 번씩 설사...(죄송합니다)하는데 이럴...
-
392.5 설경제, 56명 모집 136명 지원, 점공 51등/75등, 점공률 57%...
-
한 번도 의심한 적 없었죠
-
아. 2
아.
-
맛있어
-
2026 이동훈 기출 https://atom.ac/books/12829 안녕하세요....
태블릿 적응기라... 부족한게 많아요
날카로운 피드백 부탁드리옵니다...
도움되는 글 감사합니다
잘 보고 가요~ 이웃 신청합니다 ^^
흠 글씨 키워야할것같긴한데 다들 다운받아서 보지않나요..? 제가 태블릿으로 봐서 확대하면 커보이는건지 모르겠네요...
그건 그래염 여기서 보기엔 그러네염
도움되는 글 감사합니다
개추...
깔끔하시당
꺄 치타옵하 머시써요
오 미적 28번 저렇게 삼각형을 확장해볼 생각을 할 수도 있군요
전 현이 같다고 준 조건보고 저 확장이 먼저 떠올랐는데, 이 풀이는 뒤져봐도 찾기 힘들더군요 ㅎㅎ
현의 길이가 같다 -> 원주각이 같다 -> 원 위의 점 E를 떠올려 삼각형 CEQ를 떠올리자 -> ASA 합동
을 이용한 후 삼각형 EOD와 닮음임을 이용해 무한등비급수에서 닮음비로 넓이비 처리하듯 계산..! 어쩌면 이게 정말 출제자가 의도한 풀이일 수도 있겠네요!! 저는
'현이 주어짐 -> 원의 중심에서 현에 수직이등분선'과 '각을 많이 앎 -> sin법칙'으로 주어진 그림 내에서 해결하려던 생각이 첫 풀이였던 것 같네요
기트남어..
기트남어도 해죠오
기트남어...는 고민해보겠습니다
시간이 남으면 해볼게요..!!
14번 ㄷ 사고 과정은 어떻게 하셨어요?
전 현장에서 극한이 중첩되길래 뇌절 왔는데..
극한 중첩이라기보다는...
[-3,1]구간에서 증가하게되면 x=-3을 확인하고 최소를 갖는것을 확인할 수 있고
[-3,1]구간에서 감소하는 함수라면 1에서 최소를 가질텐데, x=1의 오른쪽 왼쪽 극한을 확인할 필요보다는,
*x=1에서 음수의 값을 갖지 않는 것만 확인해도 사실 최소가 없다는 것을 확인할 수 있습니다*
x=1에서 양수가 나오면 밑에 감소하는 함수에서는 x=1의 값이 존재하지 않으므로 최소가 없구나를 이것만으로도 확인할 수 있죠!
그래서 사실 그래프는 보여주기 위해서 그린거고, 극한 중첩도 필요없는 문제라고 할 수 있겠습니다...ㅎㅎ
아하...
이해되었습니다
너무 감사해요 ㅠㅠ
제 부족한 설명이 한번에 이해되셨다니 감사합니닷 ㅎㅎ