[이동훈t] U = A 합집합 A^C (+221114) 수학2
게시글 주소: https://orbi.kr/00062594838
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
케이스 구분,
경우 구분
....
에 대해서 얘기해 보려고 합니다.
케이스 구분은
모든 과목, 모든 단원에서
출제가능합니다.
U = A 합집합 A^C
즉, 전제 집합을 서로소인
두 개의 집합으로 구분하는 것인데요.
U = A1 합집합 A2 합집합 A3 ... 합집합 An
(단, A1, A2, ..., An 중에서 어느 두 집합도
서로소이다.)
으로 확장하여 생각할 수 있습니다.
이 주제는 각 단원마다 다루어야 할 정도로 ...
예가 참 많을 수 밖에 없는데요.
오늘은 두 개 이상의 실수가 주어졌을 경우를
생각해보겠습니다.
예를 들어 이차함수
y=x*(x-k)
(단, k는 상수)
의 그래프를 그릴 때,
다음의 세 경우로 구분하는 것이
자연스럽습니다.
k>0, k=0, k<0
그런데 문제에 따라서
0 이 경계값이 될 수도 있고,
아닐 수도 있습니다.
만약 이차함수가
y=(x-1)(x-k)
와 같이 주어지면
k>1, k=1, k<1
의 세 경우로 구분해야 할 것입니다.
요컨대 두 실수 a, b 가 주어지면
a>b, a=b, a<b
의 세 경우로 구분하는 것이 머릿속에
자연스럽게 떠올라야 할 것입니다.
예를 들어 두 지수함수
y=a^x, y=b^x
(단, a>0, b>0)
가 주어지면 다음과 같이 두 수 a, b의
대소비교를 해야 합니다.
경계값이 1 이므로
(왜냐하면 a, b 모두 1일 수 없으므로
경계값이 됩니다.
될 수 없는 수가 경계값이 되는
경우는 미적분 에서도
특히 분수함수, 로그함수, ...
등에서 자주 다룹니다.
이는 매우 중요하므로
이미 푼 문제들을 복기해보길 바랍니다.)
0 < a <= b < 1, 0 < b < a < 1,
0 < a < 1 < b, 0 < b < 1 < a,
1 < a <= b, 1 < b < a
수직선 위에 1 을 찍고,
a, b가 모두 1 보다 작은 경우
a, b 중에서 오직 한 수만 1 보다 작은 경우
a, b 모두 1 보다 큰 경우
이렇게 세 가지로 구분하고
각각에 대하여
a<b, a=b, a>b
의 세 경우로 구분하면 됩니다.
이제 수학2 기출 문제를 하나 보실까요 ?
삼차함수 x(t)에서
경계값은
x(t) = 0
의 세 실근 0, 1, -b/a
중에서 고정된 상수인 0, 1 입니다.
이제 다음의 다섯 가지의 경우를 생각하면 됩니다.
-b/a < 0,
-b/a = 0,
0 < -b/a < 1,
-b/a = 1,
-b/a >1
이 다섯 가지의 경우에 대하여
함수 x(t)의 그래프의 개형을 그리고
문제를 해결하면 됩니다.
사실 알고 나면 별것 없는 주제이긴 하지만 ...
수능 시험장에서는 잘 떠오르지 않는
경우가 많습니다.
(특히 안정적인 1등급이 아니라면
더더욱 그렇습니다.)
.
.
.
저녁 타임도
화이팅 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잘시간 됐다 1
-
음바페 골 0
시발 어휴
-
8시간 잤다 1
얼굴이 번들번들
-
존맛이지
-
ㅈㅂㅈㅂ
-
아 아무리봐도 저거 A가 리보솜이라는 게 이해가 안되는데 설명해주실 분..?? ㅠㅠ
-
바이 바이 바이시클
-
헐
-
네이버 프로필이 생겻어요 ㅎ.ㅎ
-
급 피곤, 5
ㅍ퓨퓨
-
머지 0
누가 내 커피 를 훔쳐 갓 네
-
알바하고 여행가고 집 어느정도 잘살고 하는애들 보면 부러움 분명 대학은 내가 더...
-
이거 닮음의 종류 10
귀찮다.
-
응급실 고칠게 the name 그대를 사랑하는 10가지 이유 천상연 바보에게 바보가...
-
곧 새르비도 못하겠군 15
나를 잊지말아줘 ㅜㅜ
-
어느날 말없이 떠나간대도 그뒷모 습까지도 사랑할래에
-
재밋겟다
-
다 성격보고 도망침
-
도화지가 없어도 0
그림을 그린다
-
난 잠시 그녈지켜줄뿐야 아무것도 바라는 것 없기에 그걸로도 감사해 워어
-
오르비 잘 자! 7
좋은 꿈 꾸기
-
근데 안자는 것 같음
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
https://orbi.kr/00016460498...
-
헤드셋 꺼놧다가 깜빡햇다 ㅋㅋ.
-
보컬 학원 다니기 본인 2년 좀 넘게 배우고 바리톤 이 새낀 고음 뚫기 존나...
-
266일금방이지 3
응
-
뭐가 더 나앗을지 모르겟다, 달리기로 멀 엮으려하면 다 별로다
-
쌩라이브는 대부분이 한음 내려서 부르던데 그럼 나도 노래방에서 2키 내려도 되는거자나
-
아직도 안 갓다 레전드 게으름
-
mnm 맛잇다 0
나의 아침
-
예전에 보낸거지우려는데..
-
셀레스티얼 > 사평우 > 어피니티 > 심심한 > 달리기선수
-
아까분명 싸이버거에소떡소떡에초밥먹고싶다썻는데 동태탕에 흰쌀밥먹고싶더니 이젠 레몬아이스티 마시고 싶음
-
정말 짜릿하다카피 닌자 셀레스티얼
-
해봐야겠다 버프를 얼마나 한거야
-
오르비하기도 바쁘다
-
해뜨고 봐요-!
-
닉변 12일 0
기다리기 힘들군
-
ㄷㄷ
-
모두 거짓이겟죠
-
최근에 깨달은건데 마지막에 대입해야할때 (특히 분수꼴) 조금이라도 막히면 걍...
-
진짜임
-
며칠 전에 꿈에서 16
은하수를 봤는데 도시 야경 위로 높은 빌딩에 조명에 엄청 화려한데 그 위로 은하수가...
-
인강에회의감이듦 4
어카죠
-
ㅇㅈ 4
사진 없는데 왜 클릭
-
전에 중학교때는 비록 친구도 거의 없고 찐따였지만 그냥 맛있는거 먹고 가끔씩...
-
나 1
하하
-
몸이 많이 안 좋구나 16
이제 개학까진 일말곤 나가지 말아야겠다 개학하긴 하려나..
-
4시에 뉴런듣기 0
챔스까지 한 시간
첫번째 댓글의 주인공이 되어보세요.