칼럼11) 안 소소한 테크닉
게시글 주소: https://orbi.kr/00062385201
이번꺼는 소소하지 않습니다. 어렵거나 복잡해서 그런게 아니라, 중요한 관점이라서 말이죠. 매우 유용할겁니다 ㅎㅎ
수2와 미적분에서 둘 다 사용되는 개념입니다.
혹시 미적 선택자가 아니거나 아직 미적분 공부를 안 하셨는데 내용이 궁금하시다면 칼럼 맨 아래를 참고하시면 되겠습니다. 끝부분은 같은 내용을 수2 버전으로 다루고 있습니다.
알고 있는 얘기부터 시작해보겠습니다.
이럴 때에는 f(x)는 고정한 뒤에 상수함수 y=m을 움직여가면서 관찰합니다.
이럴 때에는 직선 y=mx에서 기울기를 빙글빙글 돌려가며 관찰해주구요,
이럴 때에는 이차함수를 파닥파닥거리면서 관찰하죠.
때에 따라 상황을 맘대로 바꿔버리기도 합니다.
풀진 않을건데, 아래 문제로 예시를 들어볼게요.
ebs 문제인데요 이 문제가 딱 그러하죠. a를 바꿔줘가면서 확인을 해줘야 하는데, 이걸
이렇게 써서 이차함수 그린 뒤에 삼차함수를 파닥거릴수도 있구요
이렇게 써서 오른쪽 함수 그린 뒤에 y=a를 위아래로 움직여줘도 되겠죠.
이렇게 할 사람이 있나 싶긴 합니다만 이것도 되긴 되죠 ㅋㅋㅋ
오른쪽 함수 그린 뒤에 a값을 바꿔가며 직선을 빙글빙글 돌려줘도 됩니다.
혹 풀어본 분들을 위해 답 말씀드리자면
이 나옵니다.
주목할 점은 이겁니다. 필요한 만큼을 곱해주거나, 나눠줘서 자신이 원하는 형태로 식을 바꿔주는거죠. 목적은 관찰하기 쉬운 형태로 바꾸거나, 계산을 쉽게 하는 것에 있습니다.
원하는 만큼을 곱해주거나 나눠준다는 것을 다음과 같이 활용할 수도 있습니다. case 2개를 보여드릴게요.
case 1.
이걸 계산하는 상황에서 저 왼쪽 놈을 미분하자니... 머리가 아프죠. 이때 이렇게 할 수 있습니다.
와! 계산이 아주 쉬워져요.그림으로 그려서 상황 관찰하기도 수월합니다. 그림 상황에서 이차함수를 더 낮춰서 딱 접하게 되는 상황이 원하는 상황이네요.
계산은 간단히 마무리됩니다.
이건 양변에 x를 곱해줘서 계산을 편하게 한 상황이죠. 또 다른 경우를 보겠습니다.
case 2.
그림처럼 직선과 곡선이 접하는 경우의 a값을 구하는 상황입니다.
계산량이 꽤 있어보입니다. 식을 변형해줍시다.상황을 그림으로 그려보자면...
이건 머 암산도 되겠네요. a는 -1/e입니다.
두 번째 케이스에서는 양변에 x를 나눠주었습니다.
지금 본 두 케이스를 통합해보면 다음 결론이 나옵니다.
적당한 인수를 곱하거나 나눠서 상황을 단순화시킬 수 있다! 계산을 가볍게 해주거나, 관찰하기 쉽게 해준다.
맨 처음에 소개드린 것도 사실 같은 원리입니다. 한편, 주의점이 한 가지 있습니다. 다음 예시를 보시겠습니다.
0에서 접한다는 사실이 유지가 안 되어버리죠? 왜 이런 일이 발생한 것일까요. 앞선 사례에선 왜 이런 문제가 생기지 않았을까요?
생각보다 이유는 아주 단순합니다. 관찰하는 곳의 인수를 날려버려서 그래요. 0근처를 관찰하고 싶었던 상황에서 0근처에 조작을 가해버리면 당연히 식이 바뀌겠죠. 앞선 두 예시에서는 0을 관찰하고 있는게 아니었기 때문에 x를 곱하거나 나눠줘도 문제가 없었던 것입니다.
즉, 관찰하는 곳 외의 부분에 적당한 인수를 곱하거나 나눠서 상황을 단순화시킬 수 있다! 계산을 가볍게 해주거나, 관찰하기 쉽게 해준다.
라고 해야 완전해지겠네요.적당한 인수를 곱해준 곳 외의 부분은 접하거나 만난다는 성질이 유지됩니다. 예를 들어
여기서 x를 나눠줬잖아요? 0근처의 상황은 변했으나 그 외 접점인 1의 상황은 변하지 않습니다.
다항식의 버전을 보면 이 원리가 더 잘 와닿을 겁니다.
그려 보자면 이런 상황인거죠.관심있는 부분(접점)이 3이 아니므로 x-3를 날려버리겠습니다.
역시 그림으로 그려보자면
이렇게 그려지며, m=-4임이 보이네요. 또, 접점의 x좌표는 2인 것까지 바로 보입니다. 나머지 한 근이 -1인 것도 보이네요! 3근처에 조작을 가해줬으니 3외의 접점들은 모두 x좌표가 유지됩니다.
사실은 이 과정이 말이죠
위와 같이 식을 넘긴 뒤에 인수의 관점으로 해석한 거랑 똑같은 거에요. 이렇게 보니 원리는 매우 간단하다는 걸 알 수 있죠!
다양한 상황에서 유용하게 쓰이는, '소소하지 않은' 테크닉입니다. 전 다음에 또 좋은 칼럼과 자작문제로 찾아뵙겠습니다. 좋아요와 팔로우 부탁드려요. 감사합니다 ㅎㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅂㅂ 3
-
탈릅선언은 2
걍 하지말자 만화에서도 감동적인 이별후 다시 오면 그만큼 짜치고 뻘쭘한게없음
-
고구마님이 국어만드신 그런거처럼..
-
평소에도 댓글 잘 안 달리는데 없겠지 뭐....
-
GG
-
즉, 내가 싫어하는 오르비언은 오르비언이 아님
-
재밌어지는 법 2
중딩때는 머릿속이 드립으로 넘쳤어요 고등학교 올라오면서 적어지더니 자퇴하고 수능보고...
-
시대컨 질문좀요 2
이번 3모 적백인데 트러스 엑셀 둘다 사야함? 트러스는 쉽다는 말 있던데 잘 모르겠네용
-
인강 듣거나 빡집중으로 실모보는거 제외하면 무조건 들음
-
수학도 잘하지 인성 좋지
-
나 좋아하는 사람 26
모여라
-
기회 1번
-
수학풀때는 진짜 못참는데 그리고 공부안될때 음악틀고 사탐 수특 벅벅 풀면 그만한 힐링이 없음
-
수학 기출 0
스블 회독하면 따로 기출문제집 사서 안풀어도 되나여
-
요즘껀 어렵나 아직 18 19 20 기출임
-
ㄱㄱ
-
근데 난 슈퍼스타도 아닌데 왜
-
순수하게 분탕을 치기위해 오르비를 들어오는 ms들
-
첨알았당
-
ㅇㅇ
-
엑셀 살까 2
작년 강k 어렵게(?) 구했는데
-
박석준쌤 어떰? 2
3모 해설강의 보니까 문학 풀이방식이 조금 독특한 것 같아서.. 국어 문학을 너무...
-
조용히 들렸다가 가세요
-
공부도 못해 잠도 못 자에휴 씨 발
-
업로드되는 칼럼들은 유튜브 영상으로도 제공되니, 많은 관심과 구독 부탁드립니다!...
-
로스쿨 가야하니까 배려라고 생각하려고 해도 공대는 학점 필요없나? 걍 다 필요한건데...
-
은 뭔가요
-
지금 피램 2일치 유기함...... 아.... 죄송합니다 열심히 살지 않아서.......
-
탈릅한다고 하고 재릅하는자와 밑도 끝도 없이 도덕적이고 착한 페르소나를 연기하는...
-
로스쿨예과느낌 아닌가 실제로 리트 엄청 많이 보지 않음?
-
프사바꿈 5
-
사탐런때문에 공대 못써서 자유전공-전전 테크 타려고 했는데 막상 와보니까 과생활에서...
-
단순히 내가 공부를 못하는데 의대를 노린다던가 하는 것을 떠나서 내가 밑천이 없는데...
-
이거 전국 모든 잇올 다 합친 석차인 건가요 이게 맞다면 더프 본 잇올러만 전국에...
-
난 n제 추천해줄때 16
무조건 설맞이 1순위로 추천해주는데 물론 저거 풀만한 등급대면 ㅇㅇ
-
1. 실수 줄이는 법(부제 : 사람은 항상 같은 실수를 반복한다) 2....
-
아이디어 수강후 기생집 중인데 실전개념이 좀 부족한거같아서 뉴런 들으려고 함 근데...
-
플래너쓰고 좀 거시적인 계획은 잡아야겠어
-
현역 고3인데, 학교에서 엄기은 쌤 수업 듣는 사람이 저밖에 없는 게 너무 아쉬워서...
-
걍 바꾸지 말까
-
음음
-
갑자기 언어능력 포텐터져서 문학 100% 수렴에 독서도 10분 남기고 2틀 정도가 되는거임
-
수일만 대충 어떤내용인지 궁금합니다
-
대통령, 국회의원, 광역 자치 단체장, 광역 의회 비례 대표 의원, 교육감에 대한...
-
푸 리 나
-
금방 마감되나요? 9시에 방문접수 10명 받던데 9시에 가면 줄 쫙 서있으려나 강남권은아님
-
올해도 가면 이새끼 뭐지 싶겠지.... 근처 학원가야하나
-
아 과제하기싫다 4
교양 필수 채우겠다고 아무거나 잡지 마십쇼...
-
낄 자리가 없음

선7ㅐ추 후감상
굿굿 ㅎㅎ와 기원햄 수업내용이랑 똑같네
매번 이런 류(??)의 댓글이 달려서 이젠 올릴 때
이번 내용은 어떤 강사분이랑 비슷할까 생각하면서 올려오ㅛ ㅋㅋㅌ
ㄷㄷ
수미상관 ㄷㄷ
파닥파닥 귀엽다
복잡한 상황을 맞이할수록 '이걸 어떻게 조작해야 쉽게 볼 수 있을까?'를 생각해보는 것이 중요한 듯하네요
그쵸 상황을 단순화하는 것, 봐야할 것만 보는 것은 비단 수학 뿐 아니라 다른 모든 문제 해결과정에서 중요한 점 같아요
오...

반가워요혻 이런건 어떻게 아시는건지 여쭤봐도 되는지에대해 물어보는것에대해 호락을 받아도 되는지 질문해도 되겠습니까?
어떻게 아시는건지에 대해... 물어보는 것... 에 대해 허락을 받아도 되는지...를 질문해도 되겠
음...
네 될 거 같아요
이창무 선생님이 강조하신 관점이랑 똑같네요.
미지수 계수를 상수로 남기기 위해서 x를 나누는걸 함수 몰아넣기라고 부르면서 쓰고있어요 ㅋㅋㅋ
와좋다진짜좋다진짜다