칼럼10) 소소한 테크닉
게시글 주소: https://orbi.kr/00062374843
나름 알려진 편이고, 은근히 유용하며 개념적으로도 의미가 있는 '소소한' 테크닉 하나를 소개해드릴까 합니다.
이미 알고계신 것도 있을 거고, 아마 처음보는 것도 있을거에요!
이는 e^x의 재밌는 특징에서 시작됩니다.
y=e^x는 도함수가 e^x이죠. 원함수와 도함수가 식이 같다는 겁니다. 즉, 원함수의 함숫값이 그 점에서의 미분계수인 셈이죠. x=a에서 함숫값은 e^a, 미분계수도 e^a일겁니다.
기울기가 e^a라는 것은, x축으로 1 이동할 때 y축으로 e^a만큼 이동한다는 뜻이죠. 그런데 마침 이 지수함수 위의 점(a,e^a)는 함숫값이 e^a네요.
여기서 다음 사실을 알아낼 수 있습니다.
e^x 위에 점 (a, e^a)에서의 접선은 x절편이 a-1이겠네요!
이걸 뒤집어서 말하면, (b,0)에서 y=e^x로 접선을 그으면 접점은 x좌표가 b+1인 곳에서 생긴다는 겁니다. 기울기는 e^(b+1)이 되는 것이구요.
y=e^x 뿐만 아니라 얘가 평행이동되었을 때도 마찬가지입니다. 그 함수의 점근선 위의 점에서 접선을 날렸을 때 접점은 x좌표가 1 큰 곳에서 생깁니다.
아래 문제에 적용해보겠습니다.
기출 문항입니다. 이미 다들 잘 알고 계실 것 같습니다.
최대인 순간은 바로 나오지 않아서 계산을 좀 해줘야 하지만, 최소인 순간은 분명하죠. 기울기인 양수 a가 최대인 순간과 y절편인 음수 b가 최소인 순간이 일치하는데, 다음과 같이 양쪽에 동시에 접할 때입니다.
(그림 출처: ebs)
일단 대칭에 의해 x절편이 3/2인 걸 캐치한 상황에서, 접한다는 정보를 이용해 a를 구해야 합니다. 이때 앞서 알려드린 소소한 테크닉을 이용해볼게요. 그림에서 표시된 t가 3/2보다 1만큼 큰 5/2겠죠. x=5/2일 때 f(x)의 함숫값은 루트 e입니다. 따라서 이 순간에 a는 루트e네요.
물론 s를 이용해서 구하셔도 됩니다. s의 경우에는 x좌표가 1/2이 되겠죠. g(1/2)= -루트e니까 기울기는 루트e여야겠지요. (g(x)는 아래로 그려진 상황이니까 -부호를 빼줘야 합니다.)
어찌됐건 직선을 이렇게 완성할 수 있겠습니다. 훨씬 간편하죠!
평행이동뿐만 아니라 확대축소됐을 때에도 이런 정보를 뽑아낼 수 있습니다.
이 함수의 경우에는 x축 위에 (a,0)에서 접선을 날렸을 때, 그보다 x좌표가 1/5만큼 큰
이 점에서 접점이 생기겠죠. 함수가 5배 축소되었으니 앞서 말씀드린 1차이난다는 경향성도 5배 축소하여 1/5이 되었다고 생각하시면 되겠습니다. 주의할 점이 있다면, 이때는 미분계수도 5배를 해줘야 하겠네요. 그래서 식을
다음과 같이 써낼 수 있습니다. 근데 이건 실수 가능성도 있어보이니(???: 아 ㅆ 5배 안했다) 이건 검토용으로 사용하시면 좋을 것 같습니다.
이 특징은 y= lnx 에서도 당연히 읽어낼 수 있겠죠. 대신 1 차이 난다는게 x축이 아니라 y축의 얘기로 바뀝니다.
e의 x승 놈을 뒤집은 거로 봐도 괜찮고, lnx의 도함수가 1/x이란 것에 착안하여 기울기 해석을 하셔도 됩니다. (기울기가 1/m라는 것은, x축으로 m 증가할 때 y축으로 1 증가한다는 뜻!)
한편, 다음과 같은 의문이 드실 수 있습니다. "왜 하필 e^x에서만?"
적절한 의문이죠. 사실 이 얘기는 모든 지수함수에 대해 가능합니다.
얘도 원함수와 도함수가 상수배 차이나는 꼴이므로 다음 정보를 이끌어낼 수 있습니다.
a=e일 때는 저 차이가 1이 되었던 거죠.
준비한 내용은 여기까지입니다. 원함수와 도함수가 관계되어있다는 지수함수의 성질을 이용한 재밌는 해석이었다고 생각합니다. 앞으로도 재밌는 칼럼과 자작문제 많이 보여드리겠습니다. 유익했다면 좋아요 부탁드리고, 팔로우 해두셔서 꼭 확인해보세요!
0 XDK (+1,000)
-
1,000
-
하나 풀엇다 으응
-
애석하게도 거짓말입니다 난 쓰레기야...
-
덕코날린줄알았는데
-
퀄리티가 심상치 않은데
-
경기권 일반고 고1 내신 국어5 수학4.5 영어2 통과2.5 국어 수학...
-
난 말미잘임
-
안녕여붕아너를처음본순간부터좋아했어5월전에고백하고싶었는데바보같이그땐용기가없더라지금은이수...
-
네코 5
냐옹♡
-
꺼진 화면 속 비치는 나의 얼굴이…
-
둘다비활타서 이제 내 본계정한테 보내는 중이야
-
이상한거 진짜 아니고 찾아볼게 있어서요ㅜ.. 진짜 이상한 사람 아님
-
김정은 전 북한 국무위원장이 전날 11시 27분 강원도 철원 인근의...
-
난 그냥 맛 필요없고 카페인이 필요할 뿐인데..
-
여르비가 뭐임 2
나.
-
메뉴가 별로라 밖에서 먹어야지 흐흐
-
자작모의고사 업로드합니다(수학: 확통 미적 기하 포함) 78
안녕하세요! 어딘가에서 수학을 가르치고 있는 수학강사 손승연입니다. 곧 다가올...
-
나 사실 4
여자 되보고싶음..
-
남자 번호도 따보고 싶다
-
사회문화 도표 개념만 알고 완전 처음해보는데요 처음부터 윤성훈쌤 M Skill 12...
-
현우진 선생님 n수생 오티에서 엉망이다 그냥 계획세우기부터 다시 배워 라고 하셨던...
-
흠
-
6모 접수 마감 0
하이퍼 전일학원 종로 강동pk 싹 다 마감임? 학교 갔다와서 자느라 전화를 못했네
-
사회문화 6시간 공부한 미친놈 됨
-
누구나. 자유롭게활동하는. 오루비. 괜히. 설래는맘. 품고.여사님들괴롭히지맙시다....
-
메가스터디에선 팔던데 대성에는 없나요?
-
옆에 여자가 한명밖에 없어서 못자겠음..
-
트러스를 풀다 어싸를 풀다
-
4월, 꽃이 피는 계절. 옯남B는 평소에 관심이 가던 썸녀 혹은 짝사랑녀 H에게...
-
中매체 "한중일, 美관세 충격 대응·반도체 공급망 유지 공감대" 2
한중일 통상장관회의 평가…"美 행동 불확실성에 확실성으로 헤징해야"...
-
모여보자
-
ㅋㅋㅋㅋㅋ
-
시대기숙 대기 걸어놓긴 햇는데 러셀최상위반기숙도 ㄱㅊ나요?? 현역 때 시대를...
-
선착순.. 한명.. 베트남 21세 여자에요 부드럽게 대해주실 오르비언 구합니다...
-
one two three I'll be there
-
그 사람인줄 알고 댓 달고있었네요...
-
ㅇㅇ
-
난 그런거말고 학문성교를 원하는데;;
-
누가 닉네임 2
정시일베로 바꿔주면 좋겠다..
-
어제?더프성적표받았네요 11
국어아쉽긴하지만그래도공부한보람이있네요기쁩니다 남은모의고사는더잘봐야겠죠
-
넘 졸리네 2
학교에서 잘 잔 줄 알앗는데 왜 이러지 자야겟다
-
키미니 아이타이
-
11살 여붕이랑 내 쪽지내역이 밝혀지면 곤란한데..
-
30분동안 재밌었다
-
희소성 있는 고닉들만 노린다.
-
최선을 다해서 후회없는 4월을 보내봅시다
오늘도 개ㅊ를 벅벅
오우쉣
ㄷㄷ
무슨 말인지 이해 못하는 문돌이들 개추 ㅋㅋㅋ
무민귀여워요
으악 미적이다
으악악
아니 ㅅㅂ 이게 뭐지.,?