칼럼8) 적분의 기하적 해석
게시글 주소: https://orbi.kr/00062300769
뭔가 기하적으로 볼 수 있을 것 같은데 답지는 죄다 수식적으로 적혀있고...
그래서 기하적으로 보고 싶은데 잘은 모르겠고...
그런 분들을 위한 퀄리티 있는 칼럼입니다.
함수의 확대축소, 그 속에서 다양한 방식으로 적분 읽어내기 등을 다뤄볼게요.
가독성 높게 썼으니, 휙휙 넘기면서 읽으실 수 있을거에요!
우선 쉬운 것부터 가볼게요.
수식적으로 접근을 해볼 수도 있겠다만... 기하적으로 한 번 봅시다.
f(x)가 대충 다음과 같이 생겼다고 합시다.0부터 a/2까지의 적분값은
이 면적을 의미하겠네요.
f(a-x)도 해석을 해봅시다. 이 함수는 f(x)를 x=a/2에 대해 선대칭한 함수입니다. 따라서 다음과 같이 그려집니다.
이 놈의 0부터 a/2까지 적분값은
여기에 해당하는데요, 아까 칠한 빨간색과 같이 둬봅시다.
신기하게 딱 맞아 떨어져서 f(x)를 0부터 a까지 적분한 것과 값이 같아지겠네요.
이 식이 기하적으로는 이런 의미였던 겁니다. 근데 하필 구간이 이렇게 딱 맞아떨어진다는 걸 식을 보고 어떻게 알 수 있을까요? 당연한 거 아니냐는 생각이 드신다면...
이 식을 한 번 봅시다. 얘도 구간이 딱 떨어질 거라는게 바로 보이시나요?!
아까와는 달리 이 경우엔 안 보이는 분들도 있을 것 같습니다. 그래서 이걸 해석하기 전에, 우선 구간에 대한 대략적인 느낌을
이 예시를 통해 잡아볼게요. 적분구간에 있는 숫자 위끝, 아래끝을 함수 안의 x에 넣어보는 겁니다.
f(x)의 경우에는 당연한 소리네요. f(a-x)에도 넣어봅시다.
음 근데 약간 문제가 생겼어요. 적분은 방향도 중요하잖아요? x=a부터 x=a/2까지라면...
적분이 저 하늘색 방향으로 진행되는 거고, 그렇다면 적분값은 음수여야 해요. 오른쪽으로 진행하는 건 양수, 왼쪽으로 진행하는 건 음수니까요.
...는 오해에요! 여전히 적분값은 양수로 나옵니다. 아니 구간이 왼쪽으로 진행하는데, 어째서 양수가 나오는걸까요?
비밀은 여기 x의 계수에 있습니다. x의 계수는 적분 속도를 의미해요.
속도는 속력의 개념과 함께 방향성의 개념도 가지고 있죠.
음수라는 건 해당 구간을 반대로 가라는 겁니다. 따라서 a에서 a/2로 진행되던 구간을, x의 부호 -1에 의해 다시 거슬러서 a/2에서 a로 가게 돼요.
아직 '적분속도'라는게 완전히 와닿지는 않으실 수 있습니다. 좀 더 감을 잡기 위해 우리에게 익숙한 예시인 sin함수를 데려올게요.
y=sin x와 y=sin 2x입니다. sin2x는 sin x에 비해 진행속도가 2배 빨라요. 원래 d를 넣어야 나오던 값이 d/2만 넣어도 나오는 셈이죠. 진행속도가 빠르므로 함수는 축소됩니다.
이와 관련해서 적분값 정보도 끌어낼 수 있습니다.
이 부분 넓이는 2인건 다들 알고 계실거에요. 얘를 반으로 축소한다면?
넓이는 1이 돼요.
이게 직사각형이나 삼각형 같은게 아니라 곡선에 대한 넓이인데, 함부로 반이라고 해버려도 되냐? 라는 의문이 생길 수 있습니다. 이에 대해서는 조금 뒤에 다뤄볼게요. 일단은 반이 된다는 사실 자체에만 집중해봅시다.
지금 이거 두 개를 비교하는 중인거죠. 앞서 보여드린 '위끝과 아래끝을 함수 x자리에 넣어서 구간에 대한 느낌잡기'를 여기다가도 해보면 둘 다 0부터 파이까지 같은 구간을 말하고 있다는 걸 알 수 있습니다. 그런데 오른쪽 놈은 x앞에 계수 2가 붙었으니 2배 빠르게 진행되는 것이고, 적분값도 반이 되는거죠.
이걸 일반화해보겠습니다. 수식적으로 받아들이기보단, 해석적으로 '아 일단 관찰구간이 같은데, 오른쪽 놈이 n배 빨리 진행된거니까 넓이는 1/n배 됐겠구나. 그럼 n배를 해줘야 원래 넓이랑 같아지네' 를 자연스럽게 연상하는 쪽을 추천드립니다.
수식적으로 본다면 치환적분이랑 다를 게 없어요.
이쯤하면 '적분속도'가 뭘 말했던 건지 느낌이 오셨을 거라 생각합니다.
이제 처음 문제로 돌아가볼게요.
지금까지 이 식을 '잘' 읽어내기 위해 달려왔던 겁니다.
그럼 알려드린 내용을 한 번 적용해볼게요.
구간을 관찰해보니 f(x)는 뭐 써 있는 그대로 받아들이면 될 것 같구요,
f(a-2x)는 x자리에 0하고 a/3을 넣어본다면 각각 f(a), f(a/3)이 되네요.
a부터 a/3까지 f(x)의 적분값을 의미하는데, 적분속도가 -2이므로
해석해보자면 a/3부터 a까지 f(x)의 적분값을 반띵한 값이 나오겠네요. 거기에 2배를 해주면 식이 딱 맞아떨어지겠죠. b는 2입니다.
좀 더 기하적 느낌이 나게 접근해볼 수도 있습니다.
그러기 위해서는 f(a-2x)와 f(x)는 무슨 관계인지 파악이 되어야 합니다.
f(a-x)는 f(x)를 x=a/2에 대해 선대칭시킨 함수고, f(a-2x)는 f(a-x)를 2배 축소시킨 함수니까
각각 이런 느낌으로 그려지네요.
얘는 위 그림에서 이 영역을 의미하는데요, 이때 a/3은
구간의 2대 1 내분점입니다. 따라서 원래 f(x)의 다음 넓이와 대응돼요.
좀 더 엄밀히는 이 넓이의 반이겠죠. 그래서 b가 2가 될 때, 딱 맞아떨어지는 것이구요.
중요한 점은, '어라 그려보니까 우연히 관찰하는 부분이 딱 맞아떨어지네?' 가 아니라는 겁니다.
이 식에서 위끝 아래끝을 넣어봤을 때 관찰하는 구간이 연속적으로 이어진다는 걸 '처음부터' 바로 체크할 수 있다는 것이죠.
함수의 확대축소가 익숙해야 합니다. 삼각함수나 지수함수에서 정말 많이 쓰이고, 지금껏 본 것처럼 적분에도 활용할 수 있어요. 풀지는 않을건데, 일단 아래 문제를 보시겠습니다.
2022학년도 (2021년 시행) 대수능 30번 문항입니다. 여기서 f와 g 개형 추론을 해갈 때, 함수의 확대축소가 익숙하다면 수월하게 끝낼 수 있습니다. 또, 마지막 계산 때도 치환적분 없이 해결할 수 있습니다.
'스킬을 써서 치환적분을 안 할 수 있다'라기보단, '원래 치환적분을 하면 안 되는건데 확대축소 개념이 익숙하지 않아서 치환적분을 하는거다. 따라서 확대축소를 익혀야 한다'라는 의미입니다.
문제 풀이는 이미들 아실 거 같아서 하진 않을게요. 답은 143입니다.
여기까지 읽으시느라 수고하셨습니다. 본문 중간에 '이건 뒤에서 다룰게요' 하고 넘어갔던 부분을 가볍게 소개하고, 이번 칼럼을 마치겠습니다.
여기 말한겁니다. 만약 이게 자명하게 느껴지신다면, 아래 내용 굳이 안 읽으셔도 돼요. 좋아요 눌러주시고 갈 길 가셔요(?)
직사각형의 경우에는 높이는 그대로고 밑변을 반으로 축소한다면 전체 넓이는 반이 됨이 자명하죠. 근데 이 느낌을 곡선에도 적용할 수 있냐라는 의문이 드실 수 있습니다. (실제로 받았던 질문입니다.)
저는 아직 고등학교 수학까지만 이수했기 때문에 아래 내용이 원론적으로 맞는 말인지는 모르겠으나, 느낌을 잡는데에는 문제 없을겁니다. 질문했던 친구에게도 이거로 설명해주니까 넓이가 반이 된다는 걸 바로 받아들이더라구요. 이 설명은 목적 자체가 '직관적으로 느낌을 가져보기' 이지, '수학적으로 깊고 정확하게 파고들어보기' 가 아닙니다.
인테그랄 기호를 관찰해보겠습니다.
이 dx가 그냥 쓰는게 아니라, 의미를 가지고 있어요.
(유튜브 3blue1brown 님의 영상 중 한 장면입니다. 출처 링크는 아래 남길게요.)
적분하고 싶은 구간을 이 그림처럼 직사각형으로 나눌 수 있는데요, 밑변 길이를 0에 가깝게 하면 수많은 직사각형으로 나눠질 거고, 이 때 f(x) 즉 함숫값은 높이역할을 하게 됩니다. 그리고 인테그랄 기호에서 dx는 밑변의 의미를 가집니다. 즉 f(x)곱하기 dx가 얇은 하나의 직사각형의 넓이를 의미하는거죠. 이처럼 곡선 넓이 역시 수많은 작은 직사각형의 넓이 합으로 표현됩니다.
아까 나왔던 sinx와 sin2x에도 직사각형을 그려볼게요.
sinx에 그려진 직사각형의 개수를 유지하여 sin2x에 우겨넣는다고 치면, sin2x에서는 그 모든 직사각형의 밑변 길이가 반이 되어야 겠죠. 한편 높이는 그대로이므로 전체 넓이는 절반이 됩니다.
... 딱봐도 굉장히 위험해보이죠? 직사각형은 무한히 많고, 밑변은 0에 가까운데 이 짓을 적용해도 되는지 의심이 듭니다. 근데 함수의 확대축소시 적분값 변화를 수식적으로만 이해하는거보다, 시각적으로 자연스럽게 받아들이고 있어야 언제든지 잘 적용할 수 있다고 생각해서 위험을 무릅쓰고(?) 소개드렸습니다ㅋㅋㅋ
준비한 내용은 여기까지입니다. 내용이 도움되셨다면 좋아요 부탁드리고, 앞으로도 재밌는 칼럼, 퀄리티 있는 자작문제 많이 보여드릴테니 팔로우해두시면 놓치지 않고 확인하실 수 있습니다.
0 XDK (+100)
-
100
-
수2 자작문제 0
오류 있으면 말씀 부탁드립니다
-
3-4년전엔 많았다는데 요즘엔 왜 없지
-
난이도: 7.5/10 ※다른거 생각하기 전 n차함수의 최대 실근은 n개이다 생각하기
-
오늘의저녁 1
고추바사삭 블랙타이거쉬림프피자 콘치즈불닭 으흐흐
-
뇌가 썩었다 3
지나가다 이걸 보고 피식하고 접속할 생각을 하다니...
-
저녁 ㅇㅈ 4
오늘은 피자
-
누군가의 프사
-
04년생 올해 10월 전역에 두번째 수능 준비하고있는 군수생입니다. 목표는 지거국...
-
어지간하면 논술 하는거 추천함 작년에 6모 2틀이던 현역학생 시범수업때 ‘난 정시로...
-
[Zola] 3교육청 6번 틀린 분들(ebs 정답률 41%) 1
답답해서 글을 씁니다. ebs 정답률 41%가 나온 6번 문제입니다. 이 문제...
-
몇점이 나올까요오 알아맞춰보세요오
-
이러다 갑자기 아개어려웠네->1컷 50 이기성 지리단은 해낸다
-
추가로 여장까지
-
여름 찍먹 시켜주고 다시 겨울됐구나
-
개씹허수결심했다 3
오늘부터 물지 시작. 진짜 미친듯이 해볼게 엄마
-
낮잠 좀만 자고 9
(오르비 +)전공공부를...
-
고의는 복귀하겠다는 학생들 저격 등등 안하고 다 존중한단 분위기던데..
-
가만히 있는데 살 빠지고 싶다
-
2일 1실모 할라는데 작년 강k 구해다가 푸는거 어떻게 생각하세유
-
눈만 높음 이해 안되노
-
고2입니다. 모고 치면 문학/비문학 파트는 끽 해야 2-3개 나가는데 자꾸 화작...
-
수능특강 김상훈 0
메가 김상훈 ebs를 부탁해 들을 예정인데요 전용 교재 없이 수특 문학만 사서 강의...
-
궁둥이구멍 2
-
제일학원 아시나 5
대전사람이라 시대재종은 못가서 제일학원 재종갈 생각인데 괜찮을까요?
-
작년거 사서 풀어볼까요? 난이도가 어느정돈가요 이제 막 기출끝낸 3모 공통21틀...
-
3모를 망치고 약대 최저를 못 맞출 경우의 수시 카드도 고려해야겠다는 생각이...
-
볼텍스는 뭐죠 1
생긴 거 보면 그냥 숏컷 mk2 같은데
-
족보닷컴 결제하면 평가문제집 안사도 되나요?
-
의대입결이 향후 떨어진다면 치한약수도 떨어질까요?
-
자신이 없습니다 0
50만명에게 질 자신이..
-
수시 or 정시 0
시험 몇주 전부터 내신에 시간 다 쓰는게 좋을까요
-
진짜 개념이 없구나
-
닉변하고싶다 11
아 덕코가 조금 부족하네요? 그니까
-
교대지망에 주요과목 내신 3.3 중국어 이런 거 포함하면 4점대인데 내신해야함?...
-
장래희망 2
잠만보
-
사람 많을때 올려야지
-
싫어하는 과목은 뒤져도 안하는데 미적이 재밋다고 주말 이틀동안 시발점 미적상 완강함...
-
최신 개정판이랑 표지가 다름 좀 오래된책인듯..몇문제 없거나 다르면 그냥 반품하고...
-
레어 샀어요 4
무지무지 귀여운거 같아요
-
배불러 3
왜불러
-
천체 계산부분 좀 제대로 잡고싶긴 해요 우주론쪽 개념도 그렇구
-
[2024 김과외 전체1위] 서울대 출신 수만휘멘토 : 수능영어공부법 3번째글 - 문제풀이 및 오답처리와 막판실모 공부방법 0
김과외 진출하자마자 영어 1위, 전과목 통합 1위뿐 아니라 최신 전국연합학력평가...
-
나쁜뜻 아님 게을러서 계산 하는거 싫어함 그래서 억지로 계산줄이는거 많이 베웠음...
-
X스하러 가는중 19
오늘은 전완근이랑 이두삼두 묶어서 하는날
-
좀 낯설고 어려운데 걍 버티면 괜찮아지나요…?
-
오저메는 비빔국수 11
오르비언들 맛저하세요!
-
칼럼추좀 1
https://orbi.kr/00072651130 학생 질의응답하며 나온 내용들임

간만에 무민칼럼...귀하당
앞으로도 유익한 칼럼 많이 올려보겠습니다https://www.youtube.com/watch?v=rfG8ce4nNh0
본문에서 언급한 유튜브 링크입니다.
저분 영상 중에 재밌는게 굉장히 많아서 저도 예전부터 즐겨봤습니다. 심심할 때 타임킬링용으로 시청해보셔요
와 정말 유익하네요! 두고두고 참고하겠습니다♡
이와 비슷한 논리로 치환적분을 생각해 볼 수도 있죠
f(g(x))를 x=a인 곳에서 적분해 보면 f(x)를 x=g(a) 근방에서 속도 g'(a)로 적분한 거니까 거기다가 g'(x)를 곱해주면 f(g(x))g'(x)를 x=a에서 적분한 것은 f(x)를 x=g(a)에서 적분한 것과 비슷하다는 아이디어... 물론 엄밀하지는 않지만요

좋은 해석이네요. 저는 x 대신 nx를 넣은 비교적 간단한 변환에 대한 치환적분만 다루었으나, 말씀하신대로 g(x)로 확장하여 생각할 수도 있겠습니다.결국 2차원 도형은
(특정 상수)×가로×세로(2차원이니까)
라고만 설명해도 이해될 것 같아요
시원한 곳을 긁어주는 칼럼이었습니다
개념의 이해도가 높으시다는 게 한눈에 들어옵니다
좋아요 누르고 갑니다

감사합니다 ㅎㅎ대체 수능은 얼마나 고여야 하는거냐..
수능판...무서운 곳이죠
우와 좋네요

괜찮은 접근이죠 ㅎㅎ 함수의 확대축소는 적분/삼각함수/지수로그 어디서든 해석의 폭을 넓힐 수 있는 강력한 관점입니다.형님 혹시 이런거는 어디서 배우신건가요...? 아니면 혼자 알아낸건가요..?
평범한 수험생은 알아내기 힘든거같아서용.,,

제가 쓴 글들은 전부 수험생 시절에 혼자 알아낸겁니다 ㅎㅎ..