이런 기출변형은 환영이지
게시글 주소: https://orbi.kr/00062015851
미적분에서는 기출되었으나 수1에서는 기출된 적이 없는 요소입니다.
일단 ㄱㄱ
(더 내리면 스포)
<힌트>
f(x)와 x축의 교점을 찾을 때 다음과 같이 하시면 되겠습니다.
f(x)=0, k cosx=(x-ㅠ/2)sinx, k/(x-ㅠ/2)=tanx 의 교점을 그려서 관찰.
그려보시면 알파와 베타가 ㅠ/2에 대해 대칭임을 알 수 있습니다. 두 함수가 모두 점 (ㅠ/2,0)에 대해 점대칭이기 때문입니다.
22년 4월 30번 미적분 문제의 아이디어를 빌려와서 고퀄로 변형해봤습니다.
cos과 sin으로 이루어진 식에서 tan를 만들어내어 대칭성을 이용해 근을 관찰한다는 아이디어가 신선한 문제입니다.
앞으로도 인상적인 칼럼과 자작문제 많이 올릴테니, 팔로우해서 확인해보세요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안냐세요 강청가려다 일단 독재 했던 한 학생입니다:) 계속 독재를 할 지, 아님...
-
삼수생입니다 웬만하면 재종반 본원을 다니려 하는데 강대본관 유시험 떨어져서요.....
-
강남청솔 3
강남청솔 다녀보신분잇으면 좀 알려주세요ㅠㅠ 강남종로랑 고민하다가 강청으로...
-
C모 학원 알바들이 또 판을 치네요 ㅋㅋㅋ 작년에도 알바돌리다 걸려놓고 또 ㅋㅋㅋ
-
현재 강청기숙학원 하이퍼 문과 등록만 했는데요하다가 마음에 안들면 중간에...
-
올해 재수사는 한 학생이구요.지금 강청 하이퍼슈프림에 있어요제가 수학이 약한데...
-
송파대성 프리미엄or설특 하고 강청 슈프림 하고어디가 더좋을지요그리고 송파대성이...
3?

맞습니다 첫 정답자ㅎㅎ두달만에 푼 첫 문제라 삼각함수 값도 기억안나 경악..
문제 재밌고 좋네용

goat ㄷㄷ코사인으로 나눠도 괜찮은건가요?
코사인이 0이 될 수도 있는데 그게 좀 헷갈리네요...
알파와 베타를 구할 때에는 문제가 없습니다. 알파 베타 범위를 보면 코사인이 0이 되는 곳과 겹치는 게 없다는 걸 알 수 있어요.
반면 f(x)의 근을 전부 구하고 싶은 상황이라면, 제가 본문에 쓴 방식으로 구한 근은 f(x)의 모든 근이 아니에요. 말씀하신대로 코사인 값이 0인 x 중에서도 근이 나올 수 있기 때문이죠. 예를 들면 ㅠ/2가 있겠네요.
아 그렇군요 친절한 설명 감사합니다
그런데 코사인 값이 0이면서 동시에 (x-ㅠ/2)sinx의 값이 0이 되게 하는 x값은 오직 ㅠ/2만 존재하므로, 추가해야 할 근은 ㅠ/2만 있습니다.
아아 감사합니다!
딱 보자마자 작년 4월 30번이랑 9월 24번 생각났음 ㅎㅎ
몇 년전 가형 20번인가 거기서도 삼각함수x일차함수 꼴의 대칭 사용하는 거 나온 적 있어서 확실히 미적러들은 더 쉽게 보였을 수도
그쵸 미적에는 종종 나오는데, 수1에선 출제된 적이 없어서
수1 버전으로 변형시켜 가져와봤습니다 ㅎㅎ
근데 좀 어려웠나봅니다
조회수 대비 좋아요나 댓글이 적네요 ㅋㅋㅋ ㅠ
담엔 조금 쉽게 가야겠어요
기출 문제 풀고 이 문제 푸니 풀이가 바로 보이는데, 만약 풀지 않았더라면 풀지 못 했을 것 같네요.. 이게 기출의 중요성..?

그쵸 특히 이건 기출 변형이었으니 기출을 보지 않고 이 문제를 봤다면 꽤나 어려웠을 거 같네요