[칼럼] 『영역전개』 "벡터해석"
게시글 주소: https://orbi.kr/00073056448
기하의 주요한 세 파트는
이차곡선, 공간도형, 벡터입니다
이 중 이차곡선은 지금까지 해온 평면 기하의 연장선이니 수험생들이 상당히 빠르게 익숙해지며
공간도형의 경우에도 사교육 걱정으로부터 수험생들을 해방하려는 고결한 노력 끝에
평면의 방정식 등이 대거 약화되고, 평가원도 문제를 좀 쉬엄쉬엄 내주는 덕에
숨 쉴 구멍이 많이 생겼습니다
하지만 벡터의 경우는 이야기가 좀 다른데
지금까지 수학에서 접했던 존재들과는 결이 다릅니다

길이, 넓이, 부피, 속력
초등학교 때부터 우리는 무슨 길이를 구하라느니, 움직이는 동안 걸린 시간이 얼마라느니
소금물에 물을 탔다가 소금을 탔다가 소금물끼리 섞었다가
이러한 스칼라 값을 수학적으로 다루는 것에 집중해왔습니다
하지만 벡터는 단순히 크기만 가지는 것이 아니라 '방향'이라는 요소가 도입된
지금까지 우리가 해온 수학과는 범주 자체가 다른 존재라고 할 수 있습니다
그렇기에 낯설죠
이렇게 근본적으로 다른 존재이기 때문에
벡터끼리 더하고 빼는 기초 연산부터 다시 정의됩니다
게다가 사교육 걱정이 사라진 덕분에 벡터가 평면이라는 족쇄를 차게 되면서
어떻게든 생소하고 낯선 상황을 제시하려는 평가원의 몸비틀기가 더 심해지고 있습니다
따라서 축이 하나 줄어든 벌로 수험생들은 벡터 자체를 해석하는 능력을 더욱 정교화할 것을 요구받고 있는데
이는
0. 벡터의 연산 자체의 성질을 활용
1. 벡터를 점으로 보는 관점
2. 벡터를 선분으로 보는 관점
3. 벡터를 영역으로 보는 관점
에 대해서 0을 확실하게 숙지하고 1, 2, 3 간의 관점 전환을 자유롭게 할 수 있어야 함을 의미합니다
그 중에서 이번에는 '3'에 집중해서 문제를 관찰해보겠습니다

24년 6월 30번으로 대놓고 X가 나타내는 영역의 넓이를 구하는 문제죠
따라서 수험생들이 3번의 관점으로 접근했다면 문제를 쉽게 맞출 수 있었습니다
EBS에서도 '영역으로 푸세요 ㅎㅎ라'고 해설하고 있죠
하지만 여기서도 1의 관점이 조금 필요한데
직선 위의 점 P와 타원 위의 점 Q 중 하나는 점으로 보고 다른 하나를 영역으로 간주하여
점으로 보는 벡터에 대해서 영역을 옮겨야 X의 영역이 제대로 나타나기 때문입니다
P를 점으로 보고자 한다면 타원의 중심이 직선 위를 움직이는 영역으로 나타날 것이고
Q를 점으로 보고자 한다면 직선이 타원 위를 빙글빙글 돌아가는 영역으로 나타날 것이기 때문입니다

메가 기준 정답률 8%로 바닥을 긴 23년 6월 30번
(가)와 (나)가 모두 CX와 관련된 식인데 도무지 두 식을 어떻게 연관지어야 할지
또 그 이후에는 CX를 어떻게 처리할지가 난관이었다고 생각됩니다
전자의 경우는 0 즉 벡터의 연산과 성질 자체에 대해 익숙치 않아서 생긴 문제라면
후자의 경우는 (가)와 (나)를 통해 얻은 벡터의 해석이 미숙해서 생긴 문제라 할 수 있습니다
이 역시 영역의 관점을 도입하면 해결됩니다
먼저 (가)와 (나)를 해석하면

이렇게 정리할 수 있는데 CX에 대한 조건이 두 개나 걸려있습니다
과연 저 두 조건을 어떻게 해석해야 하나... 여기에서 1의 관점을 한번 사용해봅시다
일단 (가)의 조건이 모호하니, 좀 더 구체적인 (나)를 정리한 조건을 이용하면
제시된 세 벡터의 시점이 모두 C니까 C를 원점으로 하고 CD를 x축으로 하는 평면을 도입해보면

CX는 C를 원점으로 할 때, y좌표가 sqrt(3)인 점이 (나) 조건의 의미라 할 수 있겠네요
그렇다면 이제 (가)로 돌아가서
P가 정육각형 위의 점이고, Q가 원 위의 점인데, 제시된 벡터 모두 시점이 C로 동일한데
기시감이 느껴지지 않으시나요?

얘랑

얘는
시점의 알파벳만 다르고 상황이 똑같지 않습니까?
아까 문제를 해석할 때
한 벡터를 점으로 보고, 다른 벡터를 영역으로 보면
후자의 영역이 전자의 도형을 움직이는 영역으로 표시됐던 것 기억하시죠?
따라서

이를 시각적으로 나타내면

다음과 같은 회색 영역이 X로 가능한 영역임을 알 수 있습니다
그런데 아까 X는 y좌표가 sqrt(3)인 점이라고 했죠?

그러므로 CX가 최소일 때는 X_1, 최대일 때는 X_2가 되어야 함을 알 수 있습니다
그렇다면 X가 X_1일 때 2-k=0이고, X_2일 때는 2-k=4이므로 alpha=2, beta=-2입니다

비슷한 관점에서 이 문제 역시 영역을 도입한다면
시각적으로 언제가 최소가 되고 언제 최대가 되는지 확실하게 알 수 있습니다
결론)
료이키
텐카이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
#07년생#08년생#독학생 오르비의 주인이 될 기회 37 34
-
현역때 그냥 포기했었는데 지금되니 좀 궁금해져서요 국수탐 점수 분포 비슷합니다
-
너무 어릴적이라 가기 싫어서 안 갔음..
-
이비에스아이 0 0
이비에스아이!!
-
반수 탐구 선택 고민 0 0
쌩노베에서 1년정도 빡세게해서 요번에 서강 상경 들어가는데 뭔가 아쉬움이 남아서...
-
수1은 진짜 강사가 중요함 0 0
ㄹㅇ
-
답변좀 해주세요
-
추합 0 0
어제 중대 전추 받고 등록하겠다고 했는데 오늘 성균 붙어서... 아직 중대 등록금...
-
본인 작수 투과목 점수 0 0
물2 42 화2 37 생2 38 지2 48 공부한 물2 = 오랜만에 본 화2생2 = 3등급
-
현재 전화기중 하나 재학중인 3학년인데 혹시 캠퍼스 관련하여 궁금한거 있으면...
-
원래 수1이 수2보다 어렵나여 0 0
허허..
-
인가경->건동홍라인인데 부모님은 만족하시는데 주변 분들중에 약간 재수까지했는데...
-
목이랑 어깨 존나아프네 0 0
아 너무맘ㅎ이잤나
-
연세대학교 치의예과 26학번 새내기를 찾습니다!! 1 0
연세대학교 치의예과 26학번 새내기를 찾습니다 !! 통일 연세 ! 강철 치아 !...
-
^^제발한명만더 1 0
plz 싹싹
-
추가합격 2차 질문 0 0
정원이 28명이고 경쟁률이 5.68인데 예비 26에서 1차에 예비 16까지 됐고...
-
오르 6 0
새
-
동기부여형 강사 ㅊㅊ 8 0
제가 공부하기전 별별 생각이 많아서 집중하기 힘든데 정신적으로 싹 잡고 끌고가주시는...
-
싸이버거로 결정 0 0
-
기분좋게 공부하자 0 0
!
-
27수능 1 0
공통에 15격자점 21삼각함수 22 수열 미적에 27무등비 28 삼도극 이런시으로...
-
안녕하세요 뉴비입니다 2 1
-
메이크 미 오버드라이브 10 0
음음므
-
현자의돌 실개완 0 0
기본개념까지 자세히 다뤄주나요??
-
핵펑이 어느정도부터 핵펑임? 6 0
중대 창아공이 중대 어문급이되는건 그냥펑임 핵펑임
-
일반고 가서 외대 문과 VS 특성화고 11 0
일반고 가면 내신 2점대 중반 맞고 외대 중위과 감 특성화고는 이름있는 곳(디미고,...
-
성대 5 1
개빡세네 ㄹㅇ ㅋㅋㅋㅋㅋㅋㅋ
-
이거 뻘짓인가? 1 0
Ai한테 수특 지문 집어넣고 내용 정리하고 문제 만들어 달라고 하기
-
특히 맛있는 거 먹을 때 제가 왼쪽 눈에 비해 오른쪽 눈 시력이 좀 안 좋긴 한데...
-
보닌야행성임 7 0
어제공부시작을오후8시40분에햇음 거의매일시간대가이런데 나보다패턴더박살난사람잇을까...
-
연경 펑크네요 4 0
이쯤되면 스카이 상위과 질러보는건 필수일듯 ㅋㅋㅋ
-
랜도 노리스>텐도 아리스 1 0
왜냐면 제 아내가 될 사람이기 때문입니다!
-
뒤에 외국 애들이 5 0
육회비빔밥이 맵대 불쌍한 녀석들
-
several 3 1
씨브랄
-
싸이부기 먹을까 10 1
롯때리아 먹을까
-
슬슬 과외가자잇... 0 0
졸려 흐엉
-
연대 송도 기숙사 질문 3 0
통학할 수 있으면 통학하는게 나을까요...? 걸어서 20분 정도 되는 거리에...
-
오늘도 출근을 합니다 0 0
얌전히 월급날을 기다립니다
-
일반물리학이 이해가 안가서 고딩 때 손도 안대고 선택도 안한 물1 수특,수완을 푸는게 말이 되냐고
-
메인글 댓글에 개추 눌러주세요 축하받지 못해서 눈물이 납니다
-
메인글 저 사람은 왜 2 3
지가 병신짓해놓고 계속 남한테지랄인거임 사회성0에수렴
-
수특 필수인가요 0 0
수1수2미적 다해야하는건가요...
-
이 사람 성적 특 1 0
영어 4등급, 화학 3등급이엿으면 올해 CC도 뚫고 성불함 근데 영어 5등급 화학 낮은 4등급임
-
와 단톡방에 설의있네 5 0
개멋지다
-
수특 격자점 후기 6 0
안풀어 ㅅㅂ 진짜 쌩 격자점이누
-
상지한 몇점까지 도나요?? 6 1
-
그냥 내가 화가 많으니까 2 3
돌부처 같은 사람이 좋긴함
-
27수능 내 나름의 목표 2 2
설의성적받고설의안가기
-
EBS 연계 자작 스타또 0 1
수능 수준의 눈알굴리기 메타(+약추론)를 지향할거임
-
재수 조언 좀 ㅂㅌ 0 0
미대 입시생이고 수시때 미활보 잘못써서 다 광탈 정시도 2광탈하고 예비 기다리는중...
공간도형 많이 봐주고 있는 거 같긴 해요
기하 응시자가 많이 없다보니까 기출뺑뺑이로 갈려는 거 같은데 벡터는 얘기가 다르긴 하죠 낯설기도 하고
기출소재로 내도 대가리 터질수도 있으니까..
스크랩해놓고 심심할때마다 읽어야겟음 좋은 글 감사합니당
애초에 공간 자체가 팔다리 다 잘리고 삼수선만 남은지라 상황을 꼬아내는 자체에 한계가 생기다보니 ㅜ
그래서 평벡에서 온몸 비트는 거 같긴 합니다 ㅋㅋㅋ
진짜 개처럼 개추를
벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅
[짧럼] 울트라맨 칼럼 독해법
1. 스크롤을 아래로 쭉 긁는다
2. 세 줄 요약을 읽는다
3. 스크롤을 맨 위로 올려서 요약대로 구간을 나누어 정독한다
'이번엔 두 줄'
그저 빛.. 감사합니다
기하 화이팅

기하러 좋아요 누르고 갑니다사걱세 덕분에 141129같은 흉악한 킬러로부터 수험생들이 해방되니 기쁘도다
요즘 기하 난이도가 적절히 잘 나오는 듯해요
푸는 맛이 좋아서 계속 하게 되네여
평면으로 한정된 덕에 상황 해석하는 난도가 높아진 덕분 같아요
캬 떴다
오늘 프메 영역 파트 강의 듣기 전에 문제 푸는데 앞과 다르게 진짜 모르겠어서 내가 문제 있는 건가 싶었는데 원래 난이도가 있는 파트였군요 참고 열심히 해보겠습니다
(혹시 이런 파트 잘 안 풀리면 벡터 초반 부분 기출 파트 전부 끝내고 공부하나요 아님 우선 부딪혀보나요...?)
후속 칼럼에서 짧게 언급 했으니 참고 해주세요
https://orbi.kr/00073065974/%255B%EC%B9%BC%EB%9F%BC%255D%2520%E3%80%8E%EC%98%81%EC%97%AD%EC%A0%84%EA%B0%9C%E3%80%8F%2520'%EC%96%B4%EC%A0%9C%EA%B1%B0%EB%B3%B4%EC%B6%A9'
어림도 없지 이쪽도 료이키 텐카이 무료쿠쇼!
영역대결을 해보자!◕‿◕
사실 주술회전 안 봤음
공간도형은 대체 어떻게 풀이하는 거였나요..??
1. 삼수선을 찾는다
2. 1을 잊지 않는다
기하 잘하는 사람들은 이차곡선, 처음하는 사람들은 공간도형을 어려워한다 라고들 말하는데 저는 문제를 풀면 풀수록 벡터가 제일 맵더라구요
걍 벡터가 제일 어려운게 맞음요
이차곡선은 뭐 사설에서 케이스 개꼬아서 냈을 때나 아니면 방심하고 유기하다가 빡 맞는경우거나..
다들 고이면 벡터가 제일 쉽다는데 저만 어려워하던게 아니었군요ㅜㅜ 진짜 벡터는 관점을 돌린다고 문제 노려보는 시간이 제일 길고 풀때 호흡도 길어서 힘들더라구요
이차곡선은 그냥 수1 연장선이라서 기하느낌이 제일 안나죠. 저는 개인적으로 제일 노잼이에요
공도는 기하 그 자체고...
벡터는 문제에서 내주는 조건 해석만 쭉쭉 잘 따라가면 아무리 어려운 문제라도 답을 쉽게 낼 수 있는데 그 조건 해석을 적절하게 하는 게 어려운 것 같아요. 예를 들어 벡터의 합을 누구는 내분점으로 해석하고 누구는 성분화해보고 누구는 제곱해보고 누구는 분해하거나 평행이동해서 자취로 표현해보고... 잘 안 풀리면 현T께서 말씀하신 것처럼 손절이 익절이라고 빨리 다른 방법으로 넘어가야 되는데 그게 쉽지 않죠. 미적 30은 손도못대는 경우가 많은데 기하 30은 벡터 못하는 사람이어도 조건 해석만 잘하면 5분컷 할 수 있다고 생각해요. 출제의도대로 조건 해석하는 게 힘들어서 그렇지...
공도는 진짜 팔다리 다 날아가서 어렵게 내는데 한계가 뚜렷합디다
기하러인데 너무 잘봤어요 감사합니다
기하 화이팅