RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (3/3) >
게시글 주소: https://orbi.kr/00061908780
[목차]
1. 다항함수의 도출
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
① 다항함수 f(x)에 대하여 f(a)=0인 경우
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
3. 다항함수의 이해: 다항함수의 함숫값
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
② n중근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
------------------------------------------------------------------------
[이전 칼럼]
RC - [수학Ⅱ] 삼차함수 네모박스 < 00 INTRO (+ 자기소개) >
RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (1/3) >
RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (2/3) >
------------------------------------------------------------------------
※ 수학Ⅱ 문제는 함수의 모양을 정확히 파악하는 것이 중요합니다.
머릿속에 그래프를 그려낼 수 있을 만큼 그래프 개념에 숙달되신 분이 아니라면,
반드시, 옆에 노트 등을 두고 그래프를 그리며 내용을 따라오십시오.
권장사항이 아니라, 필수사항입니다.
------------------------------------------------------------------------
이전 칼럼
[수학Ⅱ칼럼] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (2/3) >
에서 이어집니다
3. 다항함수의 이해: 다항함수의 함숫값
위의 내용을 완벽히 이해하여 주어진 함수의 정보를
단순히 그냥 정보로 받아들이지 않고
근과 관련된 정보로 해석하여 패턴을 활용할 수 있을 때,
함수를 완벽하게 도출해내지 않고도
해당 정보를 활용하여 x값을 대입한 결과를 파악할 수 있으며,
반대로 x값을 대입한 결과를 역추론하여 함수를 도출해내야 하는
고난도 문제 유형에 대해서도 손쉽게 접근할 수 있습니다.
아래에서 설명하면서 문제를 푸는 과정에서는
“왜 이 쉬운 문제를 이렇게까지 돌아서 어렵게 푸는 것이냐?”
라고 반발심이 들 수도 있겠지만,
이후 최고난도 문제에 접근하는 중요한 Key를
쉬운 문제를 통해 체화하기 위해서라고 생각하고
따라와 주시면 감사하겠습니다.
아래 내용은 (1)에서는 이차함수, (2)에서는 삼차함수를
대표적인 예로 들어 설명하고 있으나,
해당 내용은 일차함수를 포함한 모든 다항함수에서 적용되는 내용입니다.
우선 스스로 이차함수/삼차함수가 아닌 다른 다항함수의 경우에는
어떻게 될지 상상해 보시고,
이후 과정에서 여러 문제를 풀어보며
해당 개념을 점점 체화해나가시기 바랍니다.
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
위의 그림과 같은 최고차항이 a인 이차함수 f(x)의 예시를 생각해 봅시다.
새로운 함수 h(x) = f(x)-g(x) 는 최고차항이 a이고 x=p, x=q를 근으로 갖습니다.
즉, h(x) = f(x)-g(x) = a(x-p)(x-q)입니다.
이때 x=t에서 f(x)와 g(x)는 | a(t-p)(t-q) | 만큼 떨어져 있습니다.
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(1)-①을 조금 변형해서 f(x)가 직선 y=bx+c와 만난다고 해 보죠.
새로운 함수 h(x) = f(x)-g(x) 는 역시 최고차항이 a이고 x=p, x=q를 근으로 갖습니다.
즉, h(x) = f(x)-g(x) = a(x-p)(x-q)입니다.
이때 x=t에서 f(x)와 g(x)는 | a(t-p)(t-q) | 만큼 떨어져 있습니다.
예시 상황을 한 번 만들어보죠.
[문제] 최고차항의 계수가 1인 이차함수 f(x)가 한 직선 y=g(x)와 (1, 1), (5, 9)와 만난다고 할 때, f(4)의 값을 구하시오.
다음 문제를 푸는 정석적인 방법은 다음과 같습니다.
먼저 y=g(x)가 (1, 1), (5, 9)를 지나므로
x증가량은 4, y증가량은 8 이므로 기울기는 2, y절편은 –1입니다.
즉, g(x) = 2x-1
f(x)와 g(x)의 그래프가 x=1, x=5에서 만나므로
h(x) = f(x)-g(x) = f(x)-(2x-1) = (x-1)(x-5)
f(x) = (x-1)(x-5)+(2x-1), f(4) = 3×(-1)+7 = 4 (Q.E.D.)
그런데 위에 설명한 개념을 응용할 경우
f(x)와 g(x)가 x=1, x=5에서 만난다는 점을 이용해
f(x)와 g(x)가 y축 방향으로 | a(x-1)(x-5) | 만큼 떨어져 있으므로
x=4에서는 f(x)와 g(x)가 | 1×3×(-1) | = 3 만큼 떨어져 있고,
f(x)의 최고차항의 계수가 양수이므로
1<x<5에서는 f(x)가 g(x) 아래에 있다는 점을 이용하여
g(x)=2x-1 에 대하여 g(4)=7, g(4)-3 = 4 = f(4) (Q.E.D.)
와 같은 방식으로 답을 구할 수도 있습니다.
말로 풀어서 이렇게 내용이 더 길어 보이지만,
머릿속에 해당 개념을 떠올리고 계실 경우 해당 풀이는
g(x) = 2x-1, g(4)=7, | f(4)-g(4) | = | 1×3×(-1) | = 3,
f(4) = 7-3 = 4 (Q.E.D.)
와 같이 줄어듭니다.
훨씬 더 빠르게 문제풀이가 끝나게 됩니다.
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
기본적으로 (1)-①과 유사합니다.
위의 그림과 같은 최고차항이 a인 삼차함수 f(x)의 예시를 생각해 봅시다.
새로운 함수 h(x) = f(x)-g(x) 는 최고차항이 a이고 (x-p), (x-q)²를 인수로 갖습니다.
즉, h(x) = f(x)-g(x) = a(x-p)(x-q)²입니다.
이때 x=t에서 f(x)와 g(x)는 | a(t-p)(t-q)² | 만큼 떨어져 있습니다.
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2)-①을 조금 변형해서 (1)-②와 같이 f(x)가 직선 y=bx+c와 만난다고 해 보죠.
새로운 함수 h(x) = f(x)-g(x) 는 역시 최고차항이 a이고 (x-p), (x-q)²를 인수로 갖습니다.
즉, h(x) = f(x)-g(x) = a(x-p)(x-q)²입니다.
이때 x=t에서 f(x)와 g(x)는 | a(t-p)(t-q)² | 만큼 떨어져 있습니다.
전 게시물에서 풀었던 문제들을 다시 한 번 풀어봅시다.
전 게시물의 example04 문제를 구해야 하는 함숫값만
f(0)에서 f(3)으로 살짝 변경한 것입니다.
위 문제를 풀고 난 후, f(0)은 얼마일지도 한 번 구해보시기 바랍니다.
최고차항의 계수가 1인 삼차함수 f(x)의 x=2에서의 접선은 g(x) = x+2 이고,
f(x)와 g(x)가 x=2에서 접하고 x=-1에서 접하지않고 만나므로
h(x) = f(x)-g(x) 는 (x+1), (x-2)²를 인수로 갖고.
f(x)와 g(x)는 | (x+1)(x-2)² | 만큼 떨어져 있습니다.
그리고 그림을 그려보면 알겠지만
최고차항의 계수가 양수이므로
x=3에서는 f(x)가 g(x) 위에 있고,
g(x)에 대해 g(3)=5이며,
x=3에서 f(x)와 g(x)는 | 4×1² | = 4 만큼 떨어져 있습니다.
즉, f(4) = 5+4 = 9 (Q.E.D.) 이군요.
좀 더 어렵게 가 볼까요,
전 게시물의 exapmle03을 그대로 가져왔습니다.
(가) 조건에 따라 f(x)는 최고차항의 계수가 2인 이차함수입니다.
이때 (나) 조건을 해석해보면, f(1)=0, f’(1)=3 입니다.
즉, f(x)의 x=1 에서의 접선 y=g(x)
(1, 0)을 지나고 기울기가 3인 직선이며, 즉 g(x) = 3x-3 입니다.
이때 h(x) = f(x)-g(x) 에 대하여 by definition of 접선,
h(1) = f(1)-g(1) = 0, h’(1) = f’(1)-g’(1) = 0 이므로
h(x) = 2(x-1)²입니다.
f(x)와 g(x)는 | 2(x-1)² | 만큼 떨어져 있으며,
x=2에서 g(2)=3 이고, f(x)는 g(x) 위에 있으며,
f(x)와 g(x)는 | 2×1² | = 2 만큼 떨어져 있으므로
f(2) = 3+2 = 5 (Q.E.D.) 입니다.
------------------------------------------------------------------------
이렇게
RC - [수학Ⅱ]삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 >
가 마무리되었습니다.
해당 내용은 단순히 삼차함수 관련 문제를 풀 때뿐만 아니라
모든 수학Ⅱ 문제를 관통하는, 수학Ⅱ 이해의 뿌리가 되는 내용이니만큼
해당 내용을 눈 감고도 머릿속으로 떠올릴 수 있을 만큼
철저히 숙지해두시기를 바랍니다.
댓글과 좋아요 등으로 많은 분들이 유익한 글 볼 수 있도록 도와주시면
글을 작성하는 저에게도, 수능을 함께 준비하는 동지들에게도 큰 힘이 됩니다.
위 내용에 대한 질문이 있으시다면,
사진 등으로 피드백이 불가능한 오르비 쪽지보다는
제 프로필에 있는 오픈채팅 링크로 들어와 주시면 감사하겠습니다.
다음 칼럼의 주제는 삼차함수 고난도 문제의 Essential 한 Key가 되는
RC - [수학Ⅱ]삼차함수 네모박스 _ < 02 삼차함수 네모박스, 삼차함수의 도함수 _ 개념 소개 >
(링크)
입니다.
빠른 시일 내에 돌아오도록 하겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 2 답글 달기 신고
-
회원에 의해 삭제된 댓글입니다.좋아요 1
-
본인 블랙 화이트만 신음 초록,파랑,레드 이 색깔 신발 신는 사람 있음?
-
집에 돈이 많던지 적던지 부모 뺵이 있던지 없던지 인맥이 넓던지 좁던지 못생겼던지...
-
재수합니다 0
충북대 등록포기했고 진주교대 바로 앞에서 문닫혔고 수능날 평백 25내리고 재수라.....
-
어디가 이성적으로 맞는 선택이라 보시나요
-
뭐임? 신기하다
-
질문 ㄱㄱ 울학교에서 30명은 간듯ㅋㅋ
-
w214boost랑 뭐 하나 더잇엇는데 하튼 닉 세갠가 네개째임
-
하츠오브 아이언 0
개 재밌어 보이는데 전쟁덕후로서 참을 수 없음
-
2년 남았다 1
국어 2컷 (이 ㅅㄲ 가 가장 문제) 미적분 100 영어 2 지1 98 물2 94...
-
화학러 고민 2
처음엔 고석용 선생님 강의로 쭉 갈 생각이었는데, 김준 선생님이 압도적이라는 얘기가...
-
난이도 둘중하나로나오면 머고를거임?
-
설대 필수 시절에는 투 하나만 꼈는데 이제 투하는 애들은 거의 두개씩 끼는게 변수임...
-
내가 맨날 배달 음식 시켜주고 심부름도 해주는데 왜 ㅈㄴ 까칠할까 나랑 13살 차이나는데
-
참고로 본인은 1년정지먹어서 글 못씀
-
ㅜㅠㅠㅠㅠㅠㅠ
-
시립대 0
추가모집 자연 949.80 이면 붙을까요??
-
이 신발 어때요 9
1,2,3번 다 이쁨?☃️
-
필기감도 좋고 울트라라서 화면 넓직한 것도 좋은데 그 펜슬 자체가 진짜 확실히 좀...
-
한양대 목표 재수생인데 내신 2.1이면 ㄱㅊ은거임?ㅜㅜㅜ… 수시러엿다가 6광탈하고...
-
22수능 대비 교재로 23 24 25 26수능 돌려막기
-
아빠가 수능 준비할때 이런 조건을 내거셨음 "수능 끝나고 대학 가면 자취시켜줄게"...
-
진짜눈만ㅇㅈ 29
다른사진올리면특정당할거거ㅏㅌ음 ㅎ
-
1. 트밀 끝나고 바로 러쉬 들어가나요? 2. 단과 라이브 기준 작년 내신 휴강 없었나요?
-
걍 살아야지
-
대성 새로 오신 것 같은데 어느정도 입지가 있는 것 같아서요 강대에서 유명한 분이셨나요?!
-
목동 시대인재 재종 정규반 개강했나요? 그리고 수업이랑 컨텐츠 말고 인강이랑 병행...
-
ㅅ. ㅍ
-
공부하러 감 1
-
끔찍한 상상 해버렸는데 12
양손에 스시모듬 들고 서빙하다가 혹시라도 실수해서 넘어져버리면 개닦이고 3만원...
-
대학생입장에서 피자한판 치킨 한마리 다 먹을 수 있는게 넘 커요
-
수학 - 김범준 + a (아마 쫑느 라이브 중간합류할듯) 국어 - 정석민 사문 -...
-
근데 왜 뽀삐가 딜 1등이냐?
-
표본 꼬라지 ㅅㅂ
-
차영진 수1 팔로워,기무적 다듣고 뭐하는게 좋을까요? 12월달부터 해서 수1수2...
-
물론 본인은 저능해서 1년박고도 사문 만점 못받음
-
아니 다 상대평가 잖아 똑같이 4퍼인데 기준이 뭔지 잘 모르겠네 쉬우면 다 쉬운거 아녀요?
-
미적 3
작수 확통4등급인데 수학3만 떠도 되는데 미적해도 될까여
-
편법 x 수능성적표 인증하심 됩니다~
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
어떤 분위기인가요? 그냥 3/4부터 바로 등교 안한다는 분위긴가요? 안갈거면...
-
앞으로 3시간 30분
-
기하 vs 확통 3
공대 가려는데 작수131415 202122 못풀었고 백분위50인데 기하하면 다른과목...
-
친구들 다 군대가서 휴가 나오면 쓸쓸하구먼..
-
도저히 못 먹겠는데...먹다가 느끼해서 절반만 먹고 신라면 레드로 입가심 중임..
-
생지 하다가 생명 사문으로 런했는데.. 사문 한번도 안해봐서용
-
저녁 치킨ㅇㅈ 7
양념은 역시 페리카나
-
선착1 5
탈릅기념 덕코 증정
-
https://orbi.kr/00072135873 몇 명 더 와줘 재밌당