RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (1/3) >
게시글 주소: https://orbi.kr/00061783789
[목차]
1. 다항함수의 도출
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
① 다항함수 f(x)에 대하여 f(a)=0인 경우
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
3. 다항함수의 이해: 다항함수의 함숫값
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
② n중근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
------------------------------------------------------------------------
[이전 칼럼]
RC - [수학Ⅱ] 삼차함수 네모박스 < 00 INTRO (+ 자기소개) >
------------------------------------------------------------------------
※ 수학Ⅱ 문제는 함수의 모양을 정확히 파악하는 것이 중요합니다.
머릿속에 그래프를 그려낼 수 있을 만큼 그래프 개념에 숙달되신 분이 아니라면,
반드시, 옆에 노트 등을 두고 그래프를 그리며 내용을 따라오십시오.
권장사항이 아니라, 필수사항입니다.
------------------------------------------------------------------------
1. 다항함수의 도출
수학Ⅱ 단원 문제들은 다항함수 또는 다항함수를 변형한 함수에 관한 문제를 출제합니다.
다항함수를 변형한 함수 또한 표면적으로는 여러 형태를 취하고 있지만
근본적으로 보았을 때 이들은 모두 구간별로 정의된 다항함수이며,
이는 결국 여러 다항함수를 이어붙인 것에 불과합니다.
결국, 수학Ⅱ의 문제들은 다항함수에 대한 문제이며,
다항함수의 미지수를 결정하는 문제라고 할 수 있다는 것이죠.
이러한 다항함수에는 0차함수(상수함수), 1차함수, ... n차함수(n은 음이 아닌 정수)가 있으며
n차함수에는 n차항, (n-1)차항, ..., 1차항, 상수항, 총 (n+1)개의 항이 존재합니다.
따라서 n차함수의 식을 도출하기 위해서는
(n+1)개의 항의 계수를 결정하기 위한 (n+1)개의 독립적인 정보가 필요하며,
이 (n+1)개의 정보를 연립하면 모든 항의 계수를 결정할 수 있습니다.
그런데, 만약 주어진 정보가 단순히 마구잡이로 주어진 것이 아니라
일련의 패턴을 가지고 있을 경우,
해당 정보의 패턴을 활용하여 원하는 함수를
훨씬 간단하게 도출해낼 수 있습니다.
그리고 수능에서 출제진들이 평가하고자 하는 것이
단순히 연립방정식 여러 개를 만들어서
이를 빠르게 계산하는 노가다 능력이 아니라
자료를 해석하고 원하는 솔루션을 도출해내는 능력이기 때문에,
점수가 높은 문제, 고난도 문제일수록
단순히 정보를 나열하여 연립하는 것이 아니라
정보에 존재하는 패턴을 파악하는 것이 중요해집니다.
그렇다면, 수능 문제에서는 다항함수에 대한 어떤 패턴이 나올까요?
------------------------------------------------------------------------
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
다항함수의 도출을 위한 정보로 제공되는 패턴 중 가장 기본적인 것은
단연 해당 다항함수의 인수에 관한 정보입니다.
다항함수의 인수에 관한 정보가 주어진 경우,
해당 다항함수를 인수분해할 수 있기에
나머지 부분을 훨씬 쉽게 도출해낼 수 있지요.
다항함수의 인수와 관련된 정보는
다음 ①~③의 형태로 제공됩니다.
① 다항함수 f(x)에 대하여 f(a)=0인 경우
다항함수 f(x)에 대하여 f(a)=0인 경우에는
다항함수 f(x)가 (x-a)를 인수로 가지고 있습니다.
예를 들어, 삼차함수 f(x)에 대해 f(3)=0이라는 정보가 주어져 있을 경우,
f(x) = ax³+bx²+cx+d , 27a+9b+3c+d = 0
으로 정리하는 대신
f(x) = (x-3)(px²+qx+r)
와 같이 나머지 정보를 정리할 수 있다는 것이지요.
해당 개념을 활용해 예제 하나를 풀어 봅시다.
아주 기본적인 정보 나열을 통해 다음 문제를 푸는 방법은 다음과 같습니다.
먼저 이차함수 f(x) = ax²+bx+c 에 대해 각 값을 대입하면
f(1) = 0 이므로 a+b+c = 0,
f(5) = 0 이므로 25a+5b+c = 0
f(3) = -8 이므로 9a+3b+c = -8
이므로 첫 번째 식과 두 번째 식에서
a+b+c = 25a+5b+c , 24a = -4b, b=-6a,
a+b+c = a-6a+c = c-5a = 0 , c=5a
세 번째 식에서
9a+3b+c = 9a-18a+5a= -4a = -8,
a = 2, b = -12, c=10
f(x) = 2x²-12x+10 , f(7) = 98-84+10 = 24 (Q.E.D.)
그런데, f(1) = 0, f(5) = 0이라는 정보를 단순한 정보가 아니라
f(x)의 근에 대한 정보로 이해하게 된다면 풀이가 확 달라지게 됩니다.
f(1) = 0 이라는 정보에서 f(x)가 (x-1)을 인수로 갖는다는 것을,
f(5) = 0 이라는 정보에서 f(x)가 (x-5)을 인수로 갖는다는 것을 이해하고 있으면
위의 풀이가 다음과 같이 달라지죠.
f(1) = f(5) = 0이므로 f(x) = ax²+bx+c = a(x-1)(x-5)
f(3) = -4a = -8 이므로 a=2
f(x) = 2(x-1)(x-5), f(7) = 2×6×2 = 24 (Q.E.D.)
딱 봐도, 풀이가 훨씬 간단해진다는 것을 알 수 있겠습니다.
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우에는
다항함수 f(x)가 (x-a)²를 인수로 가지고 있습니다.
예를 들어, 삼차함수 f(x)에 대해 f(3)=0, f’(3)=0이라는 정보가 주어져 있을 경우,
f(x) = ax³+bx²+cx+d , f’(x) = 3ax²+2bx+c,
27a+9b+3c+d = 0 , 27a+6b+c = 0
으로 정리하는 대신
f(x) = (x-3)²(px+q)
와 같이 나머지 정보를 정리할 수 있다는 것이지요.
역시 해당 개념을 활용해 예제 하나를 풀어 봅시다.
아주 기본적인 정보 나열을 통해 해당 문제를 푸는 방법은
삼차함수 f(x)를 f(x) = x³+ax²+bx+c , f’(x) = 3x²+2ax+b 로 정리하고
f’(5) = 0 이므로 75+10a+b = 0, 10a+b = -75,
f(5) = 0 이므로 125+25a+5b+c = 0, 25a+5b+c = -125
f(1) = -16 이므로 1+a+b+c = -16, a+b+c = -17
이므로 두 번째 식과 세 번째 식에서
(25a+5b+c)-(a+b+c) = 24a+4b = (-125)-(-17) = -108
6a+b = -27
첫 번째 식에서
10a+b = 4a + (6a+b) = 4a-27 = -75, 4a = -48, a=-12,
6a+b = b-72 = -27, b = 45,
a+b+c = c+45-12 = c+33 = -17, c=-50
f(x) = x³-12x²+45x-50 , f(3) = 27-108+135-50 = 4 (Q.E.D.)
와 같은 방식으로 구해야 합니다.
그런데, f(5) = 0, f’(5) = 0이라는 정보를 단순한 정보가 아니라
f(x)의 근에 대한 정보로 이해하게 된다면 풀이가 확 달라지게 됩니다.
f’(5) = f(5) = 0 이라는 정보에서 f(x)가 (x-5)²을 인수로 갖는다는 것을 이해하고 있으면
위의 풀이가 다음과 같이 달라지죠.
f(5) = f’(5) = 0이므로 f(x) = x³+ax²+bx+c = (x-5)²(x-a)
f(1) = 16(1-a) = -16 이므로 a=2
f(x) = (x-5)²(x-2), f(3) = (-2)²×1 = 4 (Q.E.D.)
역시 딱 봐도, 풀이가 훨씬 간단해진다는 것을 알 수 있겠습니다.
한 문제 더 풀어볼까요.
위 문제의 (가) 조건은 다항함수 f(x)가 최고차항의 계수가 2인 이차함수임을 뜻하며,
(나) 조건은 분모가 0으로 수렴할 때 분수가 발산하지 않으므로
분자 또한 0으로 수렴한다는 것, 즉 x→1일 때 f(x)→0임을 의미하고,
f(x)가 다항함수이므로 이는 즉 f(1)=0임을 의미합니다.
따라서 f(x) = 2(x-1)(x-a)로 정리됩니다.
이후 (나)조건에 이를 적용하면 (x-1)이 약분되어
2×(1-a) = 3 , a = -0.5 가 되고
f(x) = 2(x-1)(x+0.5)
f(2) = 2×1×2.5 = 5 (Q.E.D.)
와 같이 풀립니다.
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
다항함수 f(x)가 (x-a)를 n개 인수로 가지고 있을 경우,
x=a를 기준으로 f(x)의 부호가 바뀌면 n은 홀수,
f(x)의 부호가 바뀌지 않으면 n은 짝수입니다.
위 ①~③ 정도 정보의 활용은 많은 분들이 하고 계실 거라고 생각합니다.
제가 고등학교 1학년 때 3~40점 맞던 시기, 아무것도 모르던 시기에는
저렇게 정보를 제대로 활용하지 않은 채로 막무가내로 연립방정식만 세웠었고,
그래서 계산실수도 않았었던 거 같네요.
아마 수학 5등급 이상의 점수를 맞고 계시는 분들은
이미 이 정도의 정보 활용은 가능하실 거라고 생각합니다.
그러나, 이후에 나오는 내용까지 완벽하게 활용하고 계신 분들은
그렇게 많지는 않을 것으로 예상됩니다.
이후의 내용은
“다항함수 f(x), g(x)에 대하여 ‘h(x)=f(x)-g(x)’는 다항함수다”
라는 참인 명제를 이용하여 적용됩니다.
------------------------------------------------------------------------
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 >
칼럼은 중요한 내용이 너무 많고 전달해야 할 정보도 많아
가독성 및 여러분들의 지구력을 위해
총 3개의 게시물로 작성될 예정입니다.
해당 내용은 단순히 삼차함수 관련 문제를 풀 때뿐만 아니라
모든 수학Ⅱ 문제를 관통하는, 수학Ⅱ 이해의 뿌리가 되는 내용이니만큼
해당 내용을 눈 감고도 머릿속으로 떠올릴 수 있을 만큼
철저히 숙지해두시기를 바랍니다.
댓글과 좋아요 등으로 많은 분들이 유익한 글 볼 수 있도록 도와주시면
글을 작성하는 저에게도, 수능을 함께 준비하는 동지들에게도 큰 힘이 됩니다.
위 내용에 대한 질문이 있으시다면,
사진 등으로 질문 및 피드백이 불가능한 쪽지보다는
제 프로필에 있는 오픈채팅 링크로 들어와 주시면 감사하겠습니다.
다음 칼럼의 주제는
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (2/3) >
입니다.
빠른 시일 내에 돌아오도록 하겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
예전에 남자 친구가 그렇게 까지하는 의도가 머냐고 물어본 적 있음 오랜만에 썰 풀었다
-
수학 고민 0
재수인데 작수 미적 84 3덮 84, 3모 96 실모는 난이도에 따라 80~92...
-
ㅈㄱㄴ
-
유튜브 카더라 썰만 듣고보면 내가 봤을때 검정고시->수능 트리 탈듯 저라면? 실용성...
-
치디치디빠라삐리예에
-
아니죠..?
-
처음할때 포물선 어색한거 정상인가요 그리고 이차곡선은 태도가 제일 중요허다는데...
-
본인 짱친 전여친 12
28명임 블랙홀임 그냥 재수학원에서 29번째 여자친구를… 믿고 있음
-
봉사 실적 0
vms에서 찾은 봉사활동 하고, vms에 따로 등록을 해야 나중에 기록이 남나요?
-
미적은 스블하는중인데 공통도 스블 들을려니 강의 수가 넘 많은데 기출 풀고 n제...
-
드릴 워크북.. 0
사야될까요 드릴만 사도 된다는 생각이신가요 아님 워크북도 사야된다고 생각하시나요!?
-
돼지아님. 마크 굿즈사려고 그런 거임.
-
태감새 개꿀뱀 2
ㄹㅇ
-
오늘 뭐할까 6
어제랑 다르게 날씨도 좋네
-
몽글몽글 6
철퍽철퍽
-
물리 역학의 기술 걍 빨리 풀고 넘어가는게 나을까요? 0
기출정도는 그래도 나름 스무스하게 풀리는 실력인데 역학의 기술 사서 풀어보니까...
-
구라임
-
과탐 8개중에 저와 맞는건 이거뿐이고 만점받고 설수리가서 인터뷰하겠다는 마음으로...
-
우리 스카는 아무리 시끄러워도 남이사더라 다들
-
스피커 좋은걸로 바꾸고 들으니까 생각보다 비트 엄청 쪼개져있네요 진짜 개빡시네
-
탈출 성공 0
찐따라 따지지도 못하는 내가 너무 원망스럽다
-
혼쭐을 내는 방법 공유점
-
지문내용에 비해 너무식상하게 풀리는 문제들이 많네요 눈알굴리기라던가 그냥 문제가 너무 쉽다던가..
-
원래 미성년자가 운전해도 되는거에용?... 면허 취득이 가능한건가
-
국어 4등급 7
국어 4등급인데 어떤 커리가 더 좋아보이나요?? 반수생입니다 도와주세요…....
-
널 지킬 남자를 몰랑..
-
뭐라고? 화이트 가방 지퍼 부우우우우욱 아 진짜 모르겠다 (지친구 들으라고 내는...
-
나같은 초보가 운전하기에는 길이 너무 험난하다...
-
굿노트는 페이지 스크롤 바 같은 거 없나요? 1페이지에 있다가 따로 창 켜는 거...
-
강기분 듣고 있는데 체화가 1도 안되는데 어캄? 문학은 하라는대로 구불구불 밑줄...
-
연애인 본다 ㄷㄷ
-
서바 시즌에 서바 모의반이나 시대 단과 라이브로도 들으심? 그리고 라이브까지 하는건...
-
마크개재밌네진짜 31
난중독자다
-
재수생인데 김승리 선생님 따라가면서 tim 오늘 처음 시작했는데 일정 보니까...
-
끼잉
-
물리 기출에 1
실 느슨해지는 게 있긴 한가요 N제에서 밖에 쓴 적이 없는 것 같은데
-
3명에서 밥시간마다 다 먹고 수다 떠는 것 같은데 어케 친해진 거지
-
돈 벌고 올게 7
씐나게 놀려면 일을 해야지
-
장점이 뭐임
-
안녕하세요 이미 대학을 다니고 있긴한데 올해 논술을 한번 더 봐볼까해서 최저를...
-
이 문제에서 수축했을 때 ㄱ과 ㄷ의 변화는 이해가 되는데요. ㄴ이 ㄴ으로만 변화되는...
-
도표 없는 물2생2함
-
삼수기록 9일차 2
지인선n제 set2 틀린거 복습
-
무현동호회
-
션티 0
내신휴강 끝니고 현강에서 뭐하나요? 지금처럼 ebs 다뤄주시나요?
-
배그 마렵노 2
배그
-
몇명이서 온건진 모르겠는데 지들끼리 돌아다니면서 누구 불러내고 떠들고 ㅋㅋㅋㅋㅋ
-
n제 검색하면 7
내꺼가 많이 나온다 그리고 존경하는 다른 분들 n제 검색해도 연관검색어에 내가 뜬다...
-
조은 아침 0
-
지금 생각의전개랑 생각워크북으로 좀 진하게 기출분석 하고 있는데(하루에 한지문씩)...