[박재우] 9평에 대한 분석과 저의 생각
게시글 주소: https://orbi.kr/00058231647
안녕하세요
오랜만입니다.
어제 시험 분석을 하고 촬영을 하느라 글을 올리지 못하고
오늘 공강 시간이 되어서야 글을 올립니다.
우선 시험치느라 고생들 많이 했습니다.
언제나 얘기하는 것이지만 난이도라는 것은 개개마다 다르기에 언급하지 않겠습니다.
평균적인 난이도에 대한 부분은 여러 회사들이 분석해서 낼 것 이니까
그것이 훨씬 공신력이 있을거라 생각합니다.
오늘 아이들 질문을 받고 생각한 부분을 한 번 써 보고자 합니다.
언제나 생각해야 하는 방향은 어떻게 하면 문제를 빨리 풀고
실수하지 않고 잘 마무리 하느냐라고 생각합니다.
긴 시간을 갖고 문제를 정확하고 논리적으로 잘 푸는 것도 중요하지만
시간이라는 제약조건 내에 다시 한 번 검토할 수 있는 시간을 확보하고
좋은 점수를 얻기 위하여 전략을 어떻게 해야 효과적일까에 더 중점을 둬야 한다고
생각합니다.
이제 문제를 풀 때 어떤 부분에서 힌트를 얻고 힌트로 말미암아 중간 과정을 얼마나 많이 줄일 수 있을건지
이번 9평 주요문제들을 보면서 약간의 도움 말씀을 드리고자 합니다.
더 좋은 방법은 얼마든지 있으므로 제 말이 진리인 것은 아니라고 말씀을 미리 드립니다.
11번 - 근의 개수가 나오는 문제는 그래프 개형이라는 것과 이차함수는 항상 대칭성을 가지고 있다라는 것이
포인트겠죠. 최근 나왔던 주제이기도 하구요. 보자마자 짝수차 실근의 곱이 -9 라는 것에서
그래프상으로 +- 3인 것을 바로 얻고 f(n)=8 이되는 한 근이 3이므로 나머지 하나는 대칭성에 따라 1이 된다
끝이겠죠
13번 - 길이와 각이 주어진 문제기 니오면 일단 주어진 위치를 먼저 파악하는 것이 중요합니다.
그리고 원에 내접하는 삼각형이 있으면 바로 사인 정리를 떠올리고 반지름 구하기를 떠올리면 됩니다
일단 점 C에서 선분 ED에 수선의 발 H를 내리면 위치가 주어진 길이와 각에 의해 선분 CD는 바로 해결됩니다.
각 D는 자동해결 그리고 반지름은 OD를 생각하고 OE를 a라 두고 삼각형 OED에서 코사인 법칙을
쓰면 해결됩니다. 별로 시간이 소요되진 않습니다.
일단 각과 선분 길이가 있는 곳의 위치를 팡가하면 거기서 문제를 풀어 나갈 수 있게 될 겁니다.
14번 - 최근에 면적과 원함수의 차에 대한 해석이 좀 보이고 있습니다. 이 번 육사 문제에서도 속도에서
움직인 거리와 위치 변화량에 차에 대한 문제가 나왔죠. 명칭만 다를 뿐 기본적으로 같은 개념 입니다.
당연 절댓값이 들어가 있으므로 부호에 대한 해석이 전체 해석의 대부분이 됩니다.
두 함수의 값이 같아진다는 것이 무엇을 의미하는 지 꼭 기억하시길 바라구요
ㄱ,ㄴ,ㄷ, 합답형 문제는 우선 질문 내용을 스캔하고 들어가시면 좀 좋아지는 데 모든 질문에
이면이라는 조건이 들어가 있으므로 각 케이스에 대해 해석하면 될 것입니다.
합답형은 사고가 서로 연관이 되어 있다는 것을 꼭 기억하고 ㄴ과 ㄷ은 서로 연결이 되어 있음을
생각하고 들어가면 ㄷ 역시 간단하게 해결이 됩니다.
15번 - 기대보다 떨어지는 문제로서 살짝 실망했던 문제입니다.
전형적인 대입 추론 문제입니다.
처음에 4k가 나와 있다는 것에 착안점을 두고 반복되어지는 현상이 결국 4회를 기준으로 변할 수 있다는
것을 에상하면 빨리 해결이 되겠습니다.
(가) 경우에서 a4가 시작이므로 a1, a2, a3는 5보다 큰지 작은지 경우만 나누어서 접근하면 되겠습니다.
20번 - 별로 언급할 내용이 없습니다.
극대. 극소 x값 차가 4/3 이기에 기울기 4인 접선이 바로 (1,1) 지난다는 것은 비율로 금방 찾을 수 있겠
습니다.
21번 - 일직선 상에 놓여진 점은 항상 x축으로 수선을 내려서 삼각비를 이용해서 닮음을 쓴다는 것 기본입니다
22번 - 일단 그래프 해석할 때는 극단적인 예를 하나 들어서 상황에 만제 변회시키는 것을 추천합니다.
문제가 실근에 대한 얘기를 하기에 삼차함수의 x축에 접하는 점이 존재하는 형태의 그림을 생각하고
x축을 위 아래로 옮기면서 해석하면 정말 빨리 끝나게 됩니다.
그리고 중요한 점인 극점 부분을 항상 중심으로 우선 해석하길 바랍니다.
대략적인 부분을 공통 문제 중심으로 해석을 해 보았습니다.
결국 시간 싸움이라는 것 잊지마시고 극값 같은 중요한 포인트나 개형을 중심으로 우선 해석하는 연습을
많이 하길 바랍니다.
본인이 열심히 해왔다면 충분히 발 헤쳐 나갈 수 있으므로 남은 가간은 문제를 중심으로 해석하는 연습을
꼭 많이 하시길 바라고 시간에 대한 압박감과에 대한 대처와 풀이에 대한 전략 수립을 위해
주변 학원들에서 진행하는 현장 모의고사는 꼭 참여해서 연습해두길 바랍니다.
물론 아주 잘하는 친구들은 그냥 자기가 하던 것을 그대로 계속하시면 되겠습니다.
빨리 입시판을 건너길 바라며 파이팅입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그때 봤던 릴스 다시 보고싶은데 도저히 못찾겠다ㅠㅠ
-
돈 때문에 진로 선택하는 사람들 있는데 그러면 그냥 의대 가면 됨. 통계 자료를...
-
젭알
-
개념 인강만 듣고 마더텅 풀면 되는건가요?
-
재수 중앙대였는데 너무 학벌 컴플렉스 심해서 연고대 소리만 들어도 움츠러들고 그랬음...
-
갑자기 멍때리게됨 한 40분? 지나면 그리고 약간 알고있는 내용은 생각없이 듣는거같음 어떡하지
-
투과목은 4등급나오는것도 힘들다고 리스크가 너무 크다고 원원으로가자하고 여기선 원원...
-
설광역가려몀 1
수능대략 백분위 기준으로 어느정도가 최초합권~추합권인가요 ㅜㅜ
-
이전 조회수가 뻥튀기였던거 아닌가하는 생각이 드는...ㅋㅋㅋ 그냥 이상하네요
-
계속배고파
-
수학2목표면 현우진 과한가요? 메가에 추천샘있나요? 2
수학2목표면 현우진 과한가요? 메가에 추천샘있나요? 다른과목 할 시간때문에요
-
메인뭐다뇨 ㅋㅋㅋㅋㅋ 13
헐
-
재업이 붙은 이유 : 전에 올린 비슷한 내용의 만화에서 욕설이 적나라하게 들어가있는...
-
현우진 뉴런 필기해야할거 많나요? 필기하는거 싫어해서요
-
근데 뭐요 님 저 아시나요? 저 ”재수생“인데요 ? 남 도울 여유 업ㅎ어요
-
저녁여캐투척 8
명란젓키타
-
한권으로 크게주면 안되나 모든선생마다 매주몇권씩주니 개좆같네ㅅㅂ 내가 존나예민한건가
-
어떤가요?
-
똑같은회사가면 후자가 더 메릿이있나
-
건동홍 컬렉터 3
건동홍 다 모았네 하지만 중대로간다
-
으흐흐
-
터미널 챌린지 6
연습했는데 힘드네
-
오피셜 0
https://youtu.be/VEVqay5q0Io?si=rBhI7P4xm_O1RRR-
-
하
-
할말하않.. 11
-
3개 성공적으로 수집 완료
-
23 6모 국어 언매 선택하고 풀어봤는데 언매 언어에서 4개 틀려서 9점 까이고...
-
당시 수특에 잇엇는데 절대 안나올 지문으로 뽑히다가 나와서 뒤통수 후려갈긴걸로...
-
세월이여...
-
3세트정도 가볍게 풀어야지
-
정말 상당히 아팠음
-
반드시 그 극대점과 극솟점 사이에 변곡점이 있나요?
-
1세 반수 0
1세반수 하려면 수강신청 기간에 온라인으로 1학년 세미나만 신청하면 되는건가요?
-
아 궁디 아파 2
넘 오래 앉아있었나봐 ㅠㅠ
-
전문대에서 학고반수 할려고하는데 교수님한테 미리 말 해놔야함? 어이없는 질문이긴한데...
-
네
-
경험담임
-
말던지 앞에서 말하고 끝내야겠다
-
전에 다니던 스카에 용트름빌런 있었는데 스카 옮겼더니 걔도 곧 여기로 왔단말임?...
-
이과에 1점중반 내신인데 정시에서 문과로 교차지원할시 cc 나올 가능성있나요 ??
-
여기 좋아♡♡
-
ㄷ44집갈째띠지핮시근정도2
-
내가 수학4여서 대학을 못가는 사람인데 3모까지 하나는 확실하게 하고 시퍼서 뉴런을...
-
소로소로 오와리니시요
-
에타에 대거 펑크란 찌라시 어제 봤는데 ㅇㄱ ㅈㅉㅇㅇ??
-
제곧내
-
다이어트 개망했다 그냥
-
일반과 포함해서요 ㅇㅇㅇ
-
연애는 못해도 괜찮음 35
본좌도 연애 못하고 있지만 탑툰과 애니를보면서 사실상 연애중이라 봐도 무방한 심리상태임
-
너무 쳐먹는데 8
가나초콜릿 5개째 먹고있음
선생님 항상 존경합니다