칼럼) 미분 가능성 (수정사항 있습니다)
게시글 주소: https://orbi.kr/00058203708
미분 가능성 for Orbi.pdf
어제 갑자기 미분 가능성 나올 것 같아서 칼럼 올립니다!
수2 하시는 분들도 봐두면 좋은 내용 있으니 보시고, 미적 선택자들은 얻어갈 거 많을 듯 하네요.
다운로드 하시면서 좋아요 눌러주세요 :)
오랜만에 이렇게 칼럼으로 인사드리네요 9평 관련 글 아마 작성되는대로 올라갈 듯 합니다!
*수정 사항은 해당 페이지 이미지 아래에 썼습니다. 이미지들 확인 바랍니다
2번에서 두 번째줄부터 수정해주세요
(이번에는 g(x)의 극한은 존재하므로 (미분계수의 정의에 해당하는 x+h 즉, 증분의 극한값) f’의 값은 상관없다. 따라서 fg가 연속이 되도록 f=0만 되도 되어서 인수 개수 0개 초과면 된다.
3번의 경우 g->g’, f’->f로 수정해주세요. 결론인 0개 초과는 맞습니다.
ㄱ의 네 번째줄 좌극한식의 결과를 f(x)의 좌미분계수네서 우미븐계수로 수정해주세요
0 XDK (+21,020)
-
10,000
-
10
-
10
-
1,000
-
10,000
-
궁금함
-
제 원래 꿈이 설수였기 때문도 있어요 현실에 어쩔수없이 꿈을 포기하는 행위자체가...
-
일본에 독도넘기고 아이돌급 존예스시녀랑 연애하기 vs 걍살기
-
언매김승리강의듣고 있는데 너무 길어서 독학하려구요
-
Fwæ
-
수학여행 가면 1
드라마처럼 누군가 나에게 고백하지 않을까 기대된다
-
ㅂㅅ같이 어쩔줄몰라하고 거절도 승낙도 안하고 흐지부지 흘러가게 냅둠 그때는 연애하면...
-
흐아암
-
지듣노 0
-
짝사랑할 사람이 없다고
-
ㅈㄱㄴ
-
개연성멸망
-
.
-
잘자 3
나도 잘거니까 옯붕이들도 새르비하다가 늦게 자지말고 나랑 동시에 잠 드는거야 하나...
-
형님들 국어고자 언매5따리 강민철인강 vs피램 독학서 추천좀요 5
제가 인강을 1년동안 김승리 커리타고 5떠서 인강에 데여서 독학서 알아봣는데 피램이...
-
개씹씹씹기만메타군 10
도태한남은 이쯤에 눈치껏 자러가라는 신호구나 알겠다
-
강사가 소개하는 최적의 숏컷 풀이를 봤을때 내 풀이는 병신이구나 = X 다시...
-
를들으세여.
-
물론 사색이 너무 과하면 문제겠지만 어떤 것에 대한 의미나 과거에 있었던 일을...
-
고백 유도당할 때 11
그때가 심박수 제일 많이 올라감
-
ㅠㅠㅠㅠ
-
영어 듣기는 0
없어져야 할 것 같아요 실제 영어 듣기와 난이도 차이가 많이 나지만 시험장에서 변수만 만드는 ㅂㅅ
-
여기다가 오십번은 적은거같은데 기억나는 사람 잇나
-
현역기준
-
별생각없이 하는 모든 행동과 말투가 나에게 큰의미로 다가옴 근데 몇달동안 같이 시간...
-
중증 외상센터 추영우 키 큰 무쌍 고양이 상 먹여살릴게..
-
어카지
-
사문 질문 0
내신으로 열심히 쥰비했고 마더텅도 한바퀴 돌렸었는데 방학동안 유기해서 기억이...
-
메이플 이 똥겜은 4k모니터로 하니까 그래픽 더 구려보임
-
대충언더테일브금 0
대충비실이와퉁퉁이
-
집에 부모님 안계실때 몰래오셈
-
ㅇㄴ메타바꾸라고 4
지금까지 게시물 안 본 눈 사요
-
올해 국어 내신 선택 과목으로 화작 했는데 강민철 듣는 거 추천하시나오 객관식은...
-
그리고 내가 파악한 것은 상대의 입술은 엄청 부드럽다는 거였음 그리고 상대는 내...
-
본인은 9
여러개 선택ㄱㄴ
-
안녕하세요! 올해 서울대 약대를 목표로 하고 있는 재수생입니다. 서울대 약대에...
-
그래도 실제로 한 번 이상은 봐야하지 않나
-
짝사랑 듣는 건 2
그 수련회 같은 거 가면 여자 방 남자 방 나눠서 진실게임하고 그 다음날 야 얘가...
-
요거트 뚜껑 안 햝고 버림
-
연애하고싶어서 그사람으로 고른건지 구별을 잘 해야함
-
시대 로스쿨꺼 들어본 사람 아니 뒤지게 비싸네 강의수가 많아서 그런가 진짜 이건...
-
갈까말까 하다가 안 갔는데..
-
좃만추메타머지 3
저는일단책팔러가는거임
-
흠...?
-
홍두께살이냐 설도살이냐 우둔살이냐가 너무 고민됨
-
왜클릭
-
좀 작은 학원이니 칠 수 있는 것만으로 ㅠㅠ

감사합니다!!이거만 보고 수학 150점 받았습니다

표점 대박 기원
저도 고려대 의대가면 ur독존 수학팀에 껴 주시나요?
1인 체재입니다 ~
평가원과의 접신 ㄷㄷ
나와라 얍얍...가장 좋아하는 파트
9평 문제 궁금하네요 ㅎㅎ,,,
차수논리를 쉽게 풀어내셨네용 좋은글 보고갑니다
오랜만이시네요! 쉽게 쓰려 노력했는데 알아봐주셔서 감사합니다 ㅎㅎ
잘먹을게요! 선우형 기좀 주세요

보냇습니다 도착했나요? 응원해요 :)사랑한다고
오늘공부는이것만한다 아ㅋㅋ
좋은글 감사해요!!!
칼럼추
잘 읽었습니다!
다만 f'(x)g(x) + f(x)g'(x)로 해석하는 부분에서 g(x)가 극한값은 존재하지만 함숫값과는 다른 케이스 부분에서 질문이 있는데요 ㅠ
위 식처럼 정의대로 생각하면 f'(x)g(x)부분에서 g(x)가 극한값이라 f(x)만 0이면 되는게 아닌건가요..? 이때껏 그렇게 알고 있었는데 왜 아닌지 잘 모르겠어요,,
특수 케이스면 위에서 말씀하신 걸로 되는 함수도 있는데 일단 일반적인 걸 다루느라 저리 썼습니다 ㅜㅜ 하지만 앞선 댓글의 것도 가능한 경우도 있어서 결국 문제마다 따져봐야죠…!
아 그렇군요! 일단 1개 초과인걸로 알고 있어야겠네요 ㅎㅎ 좋은 칼럼 감사드립니다!!
제가 다시 검토 한 번 해보겠습니다
고쳤습니다. 제가 3번 설명을 2번에 썼습니다 해주신 말씀이 맞습니다.
2페이지 3번 설명에 오류있는거같아요..! fx f'x gx g'x 반대로써져있는거같아요..
기재했습니다. 제가 오타를 반대로 냈네요 알려주셔서 감사합니다,,
아니에요!! 5페이지 ㄱ 마지막에도 우미분계수 좌미분계수라고 오타있는거같아요 !
맞네요 …. 감사합니다
올려주시는 자료 항상 너무 잘보고있습니다 감사해요 :)
죄송한데 올리신 파일에 수정사항이 반영된건가요?
이미지 밑에 써두었다고 기재했습니다 제가 밖이라 지금 파일 수정을 못하네요,,
좋은자료 너무너무감사합니다