벡터=좌표라고 생각하면 큰 낭패
게시글 주소: https://orbi.kr/00056751794
[기하 선택자(또는 수리논술대비)를 위한 칼럼]
기하, 즉 도형에서 가장 중요한 것은 점이에요.
모든 도형은 점으로 이루어져 있기 때문이죠.
도형에 대한 연구는 고대 그리스 시절부터 아주 활발했습니다.
직선, 각, 삼각형, 원 등 평면도형에 대한 대부분의 성질은
무려 2천년전에 “유클리드”님이 다 정리해 놓으셨다죠.
그런데 미친넘천재 유클리드도
정의하지 못한게 하나 있으니
그것은 바로 '점의 위치'입니다.
우리가 중학교때까지 배우는 도형들은 위치가 없죠.
그냥 어딘가에 있는 삼각형, 원 이렇게 배우잖아요.
고등학교 수학에서
점의 위치를 나타내는 방법을 두 가지 배우는데,
첫번째가 좌표로 점의 위치를 나타내기
두번째가 벡터(두두둥장)로 점의 위치를 나타내기
이 두가지는 아예 개념이 달라요.
그림으로 표현하면 아래와 같습니다.
1. 점의 위치를 x, y 좌표로 나타내는 방법
익숙하죠?
모든 점의 위치를 원점을 기준으로 생각하는 것이죠.
생각해서 존재하는 데카르트님이 좌표평면을 떠올렸다네요.
2. 점을 가리키는 벡터를 이용해서 나타내는 방법
원래 벡터는 위치가 아니라 크기와 방향으로만 정의가 되는데
모든 벡터의 시점을 통일시키기로 약속하면 한 점과 어떤 벡터는
반드시 일대일로 대응이 되는거죠.
이걸 점의 위치벡터라고 합니다.
따라서 그냥 위치벡터가 아니라,
점A의 위치벡터, 점B의 위치벡터인거에요.
그럼 좌표로 하면 되지 뭐하러 굳이 왜 벡터로 점의 위치를??
이라고 생각할 수도 있겠네요? 그 이유는 뭘까요?
벡터로 하는게 편한 경우가 있어서에요.
좌표로 점의 위치를 나타내면 원점을 기준으로 해서
점의 위치를 절대적인 값으로 나타냅니다.
그런데 점의 절대적인 위치를 알고 싶은게 아니라
이 점이 쟤랑 걔 사이에 정확히 중간에 있어.
아니면 얘는 쟤랑 거리가 몇이래.
이런걸 표현하고 싶다면? 굳이 좌표가 필요없어요.
점들 사이의 상대적인 위치만 있으면 되니까요.
이럴 때는 벡터가 훨씬 편하네요.
예) 점P는 점 A와 점 B의 중점이다.
이걸
이런 식으로 표현할 수는 없겠죠?
그런데
벡터로 표현하면
이렇게 표현을 할 수 있어요.
점은 연산이 안되지만 벡터는 연산이 되니까요.
직선이나 원 같은 도형의 방정식도
위치벡터로 나타내면 훨씬 편리하답니다.
물론 벡터의 용도는 여러분의 상상 이상으로 훨씬 더 많아요.
여러분이 즐겨하는 게임에서
벡터가 광범위하게 활용되기도 하죠.
그리고 대학에서 배우는 벡터는
평면기하와 별로 상관이 없는 추상적인 개념이고....
설명하자면 끝도 없는데
일단 평면벡터만 생각해서 예시를 들어봤어요.
[결론]
여러분이 기하 선택자라면 (그래서 읽고 있겠지만)
위치벡터의 개념부터 제대로 잡고 시작하세요.
만약 위치벡터를 이해 못하면,,,
갑자기 나오는 벡터에,,, 도대체 이걸 왜 배우는건지,,,
삼각형 평행사변형, 그림놀이 열심히 하다가
갑툭튀 등장하는 내분점 공식같은걸 보면서 이건 또 뭐지...
배운건데 왜 또 나오지.... 그러다가 준킬러님 두두둥장
하시면 손도 못대는 경우가 생겨요.
기하에서는 30번 레벨 벡터문제까지
반드시 맞추도록 대비해야겠죠?
그래야 미적분 선택자에게 불리하지 않으니까요.
벡터는 확실히 잡고 갑시다!
------
여기까지는 정보성,
아래부터는 잠시 상업성을 띠는 점 양해부탁드리며...
[수업안내]
올해 기하는 수능 대비 현강이 별로 없는 듯 해요~
그래서 6평 대비 수업을 합니다!!
장소는 대치동 디오르비! 시간은 목요일 6시반부터!!
현장강의 + 라이브 입니다.
6평대비 3주 특강 <16416-기하>
이번 수업으로 기하, 특히 벡터에 대한 감이
확실하게 잡힐 거라는거 자신있게 말씀드릴게요.
지난 수업은 복습영상으로 수강가능하고요.
이번 수업 교재 뿐만 아니라 개념교재도 무료로 드립니다.
그동안 대충 알고 있던 개념을 완벽히 정리하면서
킬러가 체계적으로 풀리도록 만들어 드리는 수업이에요.
신세계를 경험하고픈 기하러는 다들 오세요.
제가 책임지겠습니다.
[16416 수강신청 링크]
https://academy.orbi.kr/intro/teacher/252/l
기하의 기초
평면도형과 도형의 방정식을 총정리하는
<아름다운 시작 - 도형>도 강추입니다!
[이승효T 특강 수강신청 링크]
https://academy.orbi.kr/intro/teacher/256/l
문의 : 디오르비 02-522-0207
칼럼이 도움되셨다면 좋아요와 팔로우 부탁드릴게요.
상승효과 이승효였습니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
추천좀
-
아 근데 답변 안할래요
-
난 항상 좋은 어른이 되려고 노력하는데 그게 잘 되지 않음... 너무 연약하고,...
-
찐사랑이라 봐주었다
-
안자는분들 8
왜안잠
-
야식추천 6
ㄱㄱㄱ
-
고해성사 6
쓸 게 없네요...
-
병원비 뭔데 12
나 왤케 아팠니
-
사탐내신대비 0
제가 2학년땐 세계사 경제 윤사였을땐 경제는 개념 습득후 마더텅 수특 다풀고 나니...
-
게이 vs 레즈 3
둘다 좋음요
-
양성애자임 2
뻥임
-
질받 메타 참요 9
암거나 ㄱㄱ
-
아 잘까? 1
제목그대롬뇨
-
3학년때 확통을 최소 2는 받아야만 하는 학생입니다 현재 시발점 했고 낼부터...
-
현강가면 집중도 잘되고 잘 가르쳐주시니까 좋긴한데 현강의 메리트가 뭔지...
-
오르비 안녕 3
나 집 간다 ㅂㅂ
-
선넘도 괜찮아요
-
프로11 사시나요 프로13 사시나요 에어11 사시나여 에어 13 사시나요??
-
맨날 술마시는데 0
진짜 ㄹㅇ중증 알콜중독인듯 나
-
거리 상으로는 홍대가 40분정도 더 가깝습니다 집안 분위기 상 자취나 기숙사는...
-
이왜진???
-
주인 잃은 레어 5개의 경매가 곧 시작됩니다. 디맥 리스펙트 V"네오위즈에서 개발한...
-
웃긴게 얘 게이인걸 여자친구한테 들킴 ㅋㅋㅋㅋ 그냥 양성애자 아닌가 싶은데 그냥...
-
개뻘글에 어그로 너무 많이끌려서 위험느끼고 튑니다 안녕히 주무십쇼 10
하 이미지 어카냐 진짜
-
오야스미 2트 1
네루!
-
우리아빠도엄마도아니면서 존나이래라저래라냐 말싸가지가 좃같은건 니들이 친척집 올때마다...
-
새벽에 심심해서 갑자기 합격증 올리기 .. ㅎㅎ 목표가 중경외시+이화..였어서...
-
심연이니까 취향선택좀 13
후타나리 vs 쉬메일
-
아빠안잔다. 10
나 ㄹㅇ 왜안잠? 시간 늦어지면서 아이큐 실시간으로 떨어지는중
-
도플러효과에서 헤맨 난 저능아
-
ㄹㅇ 황근출해병님과 전우애 실시하나요?
-
수능볼까요 13
말까요
-
주위에 레즈는 꽤 있음 15
게이는 못 봄
-
원래 계획은 미적 단과수업 + 스스로 수분감 풀면서 병행 이었는데 이번에 시대인재...
-
사랑해요
-
LGBTQ+ 3
-
먼가 무능한 남자 1같음
-
일어난김에 2
아예 일어날까 배고프고 잠이 안와
-
그냥 눈팅만좀 해보고싶은데
-
반수할까 2
미치겠다 진짜
-
숭실대가 떴노ㅋㅋㅋㅋ 아...인생..
-
난 게이 존중해 5
님들도 그렇지?ㅎㅎ
-
얼굴 오르비언처럼 생긴분 나올줄 알았는데 생각보다 예쁘셔서 놀랬던
-
서울 가고 싶다 4
클럽 가고 싶어
-
훌륭한 사업가가 되는법??
-
고려대 너무 조아
-
하아아아악 고양이가 이김
![](https://s3.orbi.kr/data/emoticons/rabong/020.png)
좋은 글 감사합니다벡터를 변화량이라고 인식하니까 그 의미가 와닿더라고요. 생긴건 가만있는 선분인데 움직임을 표현할수있다니. 단순한 표현 하나로 복잡함을 정리하는 수학의 아름다움이 느껴집니다.
단순한 표현 하나로 복잡함을 정리하는 수학의 알흠다움. 크~
우왕 미적해야징
대박 재밌겠다... 내가 재수했다면 바로 기하했다
쪽지 드려도 되나요
네~
쪽지 답장 부탁드립니다
![](https://s3.orbi.kr/data/emoticons/almeng/003.png)
기하러인데 쌤 칼럼 너무 잘 보고 있어요!! 기하 다뤄주셔서 늘 감사합니다 ㅎㅎ 벡터는 처음엔 이게 뭐지 싶어도 한번 깨우치면 참 재밌는 개념 같아요수학과는 사학과네요..