[박재우T] 다르부 정리와 도함수의 연속성
게시글 주소: https://orbi.kr/00039765358
안녕하세요 박재우 T입니다.
라스트 스퍼트 강의 시작했습니다.
저를 아는 학생들 모두 라스 선택하면 후회없을 거라 확신합니다.
열심히 달려봅시다.
이제 본론으로 들어가서
이전에 한 번 언급했던 적이 있었습니다.
도함수가 연속인지 아닌지 모르는데 도함수에서 사잇값 정리를 쓸 수 있느냐는 문제입니다.
결론부터 얘기하자면 쓸 수 있다 입니다.
물론 이와 같은 주제와 연관된 과거 기출문제는 수업시간에 다루면 안되겠죠 ?
당위성을 위해서 설명해야 하는 것이 대학과정 개념이라면 출제해서는 안됩니다.
그냥 쓸 수 있다라고 단정하고 지나가는 것도 물론 안되구요.
그래서 저는 강의에서 롤의 정리에 대해 많이 강조합니다.
암튼
도함수가 불연속일 수 있음에도 도함수에서 사잇값 정리를 쓸 수 있다는 것을
가능하게 해주는 것이 바로 다르부 정리입니다.
한 번 알아보도록 하죠.
우선 함수 중에서 미분가능하지만 도함수는 불연속인 함수로 거론되는
대표적인 함수가
입니다. 이 함수는 x=0에서 미분가능하지만 도함수는 x=0에서 자명하게 불연속입니다.
이 함수의 경우처럼 도함수가 불연속인 함수는 사잇값 정리를 도함수에서 제약없이 막 쓸 수가 없겠죠
이제 다르부 (Darboux) 정리에 대해 알아봅시다.
<Darboux 정리>
함수 f(x)가 폐구간 [a, b]에서 미분가능하고 구간 양 끝점인 a와 b에서의 미분계수가 다르면
f'(a)와 f'(b) 사이의 임의의 값 k에 대해서 f'(c)=k 를 만족시키는 점 c가 개구간 (a, b)에서 존재한다.
아래 부분은 스킵해도 됩니다. 관심있는 분들만 보셔도 됩니다.
이제 증명 한 번 해보면
인 경우를 생각해봅시다.
폐구간 [a, b]에서 정의된 함수
라 정의하면 명백히 g는 폐구간 [a, b]에서 연속이면서 미분가능합니다.
그러므로 연속성의 정리에 따라 g는 [a, b] 위에서 최솟값 g(c)를 갖습니다.
즉, [a, b] 에서의 모든 x에 대하여
를 만족시키는 c가 폐구간 [a, b]에서 존재합니다.
그런데.
이 되므로 함수 g(x)는 x=a에서 감소상태에 있습니다. 그러므로
를 만족하는 점 d가 폐구간 [a, b]에서 존재합니다. 이제 마찬가지로
이 되므로 함수 g(x)는 x=b에서 증가상태에 있습니다. 그러므로
를 만족하는 점 e가 폐구간 [a, b]에서 존재합니다.
따라서, 점 c는 개구간 (a, b)에서의 원소이고 구간에서 g(c)는 최솟값이므로
구간 내에서 극대, 극소를 갖고 미분가능하면 자명하게
즉,
입니다. 같은 방법으로
도 증명해볼 수 있습니다.
이러한 이유로 정의한 구간 내에서 f의 도함수가 연속함수가 아닐 지라도 연속함수의 경우와 마찬가지로
f의 도함수에 대한 사잇값 정리가 성립함을 알 수 있습니다.
머가 먼지도 모르겠고 그냥 그렇다고 하니깐 쓰자라는 것 보다는
아예 애시당초 이런 문제는 안 내는 것이 상책이라 생각합니다.
그래서 롤의 정리가 수능에서는 더욱 더 깊이 있게 다가오는 것이 아닐 까 생각합니다.
물론 요즘은 잘 안나오는 주제이긴 하지만서두요.
아래 기출 문제를 한 번 봅시다.
다들 아시겠지만 여기 ㄷ지문은 롤의 정리가 더 좋지 않을까요 ?
두서없는 글 죄송합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
옯접 3
5초 접음
-
물황 찾아요 0
독재 반수생니다. 1. 방인혁T 펀더멘탈 서머리 + 프솔 -> 엑퍼0까지 수강 후...
-
미적분학vs일반물리학 뭐 공부할지 추천좀
-
6평 화작 84고 2등급 안정라인까지가 목표입니다 전에는 강민철커리 피드백까지...
-
애들 커뮤에 분탕 온 이상한 아재에서 태호감 영포티 아재로 변모...
-
12,13 정도..고민해보고 풀이 익히고 +복습 기출여러개풀어보기 이런식으로 하면...
-
룸메가 와서 보더니 “왜 혼자 야스하냐”
-
ㅕㄹ 2
-
숙취해소제 마시고 갈거야
-
강은양 현강 다니다가 드랍했는데 리비에스 읽는거만으로 암기가 잘 안돼서 강e분...
-
(그냥 구글 제일 상단에 있는 거 업어옴) 돈만 보면 얼핏 괜찮아보이지만 주...
-
확통런은 없다 0
우직하게 미적으로 밀고 나갈것.
-
기다려주셈
-
박종민 미적정규 듣는중입니다 미적반은 거의 미적분 위주로 해서 서바시즌에 박종민...
-
1학년은 그냥 쭉 다녔고 2학년 1학기 끝나기 전에 자퇴하는데(중간만 봄) 그럼...
-
6모 한국사때 할거 없어서 나름의 예상컷 끄적거려놨는데 0
언매 95/90/84 확통 96/88/80 이라 써놨었네 작수 표본이었으면 뭔가 그럴듯 하지않음?
-
첫인상 써드림 14
현인상은 너무 막적을 것 같아서 안적겠어요
-
배고프다 0
밥줘
-
국제치의학회 최연소 회원을 거쳐 MD 언어추론 1타와 LEET 언어이해 1타를 한...
-
ㅋㅋㅋㅋㅅㅂ
-
이쁘다 그쵸 2
존예죠
-
그럼 과탐 때마다 걸어다니라는 말이냐
-
귀엽다 그쵸 15
아님망고
-
작가 진짜 행복할듯 많이 떡상했으면 좋겠네
-
6모 낮4입니다..거의4컷(기하응시) 찍맞도있어서 사실상 5라고봐주세요..공통...
-
국어못해서울었다 2
ㄹㅇ
-
의학에 관한 순수한 열정같은건 있어본적도 없고 돈, 지위, 워라밸 보고 왔으니...
-
[하고싶은 일을 하세요] https://orbi.kr/0001952325...
-
그 전설을 믿어보기로 했다
-
새책인줄 알앗는데 과거의내가 반이나 풀어둠
-
아으 10
다롱디리
-
넌 목이 졸리면서도 날 불러댔었지~
-
약대 개노잼 2
면허만 딴다 마인드로 왔지만 공부도 학교생활도 아무것도 재미가 없네요 이런 삶을...
-
기만하나하겠습니다 17
야채곱창에 소주 조지겠습니다
-
우리가 초딩들 로블록스 어쩌고 보는느낌아닌가
-
일본 대학원가서 기초의학 연구하고 그김에 일본에 눌러앉는 가능세계 있냐
-
비문학은 피램으로 쭉따라갈거 같고 지금 문제는 문학인데 40분 정도 걸리는것 같고...
-
쿨쿨
-
두루미
-
이뿌지 10
근데 여름이라 겨울까자 기다려야함
-
오랜만에 쇼핑햇다 11
기분이좋군 후후
-
재수생이고 올해 무조건 재수 성공 해야되는데 수학 2등급이 목표거든요 6모는...
-
사탐 과목 추천 5
사문만 하고 한 과목 지금 블랭크 상태인데 경제가 살짝 끌리긴 합니다.러그렇다고...
-
손가락 걸기인듯요! 손가락 걸기로는 틀린거 하나도 없어서 시간 10분은 줄인듯
-
아침에 에펨 안했으면 9시간 찍는건데 에효 근데 못 참겠다
-
ㅅㅂㅜㅜ 정신병 ㅈㄴ심햇을때 10살많은남자랑 사귀고 싶었는데 지금도그ㄹ럼
-
6모 분석 특강을 실시했는데 기분 좋은 수강후기가 와서 자랑 한 번만 하겠습니다 ㅎ...
-
헬조선에선 허가가 안난 약 허가가 났는데 수입이나 생산이 안되는 약 이런게 드문드문...
-
별의 물리량 문제들을 드디어 뚫었거든
첫번째 댓글의 주인공이 되어보세요.