-
3모 13315 5모 14311 탐구 공부가 어느정도 끝나서 수학을 하고있는데...
-
수능 다시 준비하면서 독학으로 하다보니 뭔가 스트레스 받고 집중 안되고 머리...
-
우선 등급은 작수기준 국어(화작) 4 수학(미적) 3(공통2틀,미적4틀) 영어...
-
딱히 자취한다는 생각이 안듦... 그냥 기숙사 사는거같음
-
정시인데 등급어그로꾼 댓글에 요즘 입시 모르는 나형충 등장 물론 작년 설경제는 빵이긴 했음
-
초딩 6년전체 따 당하고 나서 악몽도 자주꾸고 늘 불안해하고 친구 0명 자주울고...
-
오르비 안녕히주무세요 12
-
이래도 되는걸까.. 내 모든 걸 알고있음
-
새벽 드라이브 겸 스윽 가볼까
-
극단적인 곳은 성비 9:1인 이유가 있음 한의사 일 자체가 ㅈㄴ 힘든 (말그대로...
-
옵붕아 자? 26
.
-
D-41ㅇㅈ 4
내일 더 빡시게
-
속상해요... 0
속상하고 분하고 화나요..
-
일단 나부터.
-
요즘엔 오르비가 0
일기장이 되어버림
-
그럼에도 행복하게 살아야지
-
ㅋㅋ
-
최저러 공부법 1
3과목 국영탐(1개) 준비하면 되는데 하루에 한과목씩 돌아가면서 뿌실까요 아니면...
-
더데유데 1
더데유데 어떰?? 3모대비 풀었을 때 너무 실망해가지고;;; 더데유데 좋다는 소리가...
-
벌써몇달짼가~ 0
-
지금 역대급임
-
공부하는 와중에도 무의식적으로 다른 생각함 어젝밤에 본 웹툰 생각이남 집중이 잘...
-
자러갈지도 1
자러갈지도
-
오래된생각이야
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 8
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
인강은 쓸모없다. 13
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
-
답 470
-
ㅇㅋ ㅇㅋ, 그럼 오르비식으로 가볼게. 아 진짜 이거 말하면 좀 그렇긴 한데,...
-
저 조금 궁금해짐 오르비에 쓴 글들 gpt에 한번 돌려보면 뭐가 나올지도
-
자연수 하나를 저장하고 있는 기계가 있다고 하자. 이 기계에 저장되어 있는 숫자가...
-
이제 진짜 잔다 6
8시에 강기원 자받튀하러 가야됨
-
애니메이션 뭐에요..? ㄹㅈㄷ네
-
국수영 원점수 기준 전교 3등 국수영탐 원점수 기준 전교 2등 (추측)...
-
원래 수분감, 카나토미 이정도 하고 엔제 풀려고 했는데 교육청기출까지 하고...
-
메인글 뭐노 2
이제 봤네
-
레전드겠네 은케티아 유관 아스날 무관 ㅋㅋㅋㅋㅋㅋ
-
아침 안 먹으면 훨씬 버티기 수월함 뭐 먹는 순간 긴장 다 풀리면서 급 졸림...
-
남자 유튜브에선 주접떨어도 별 말 안 하는데 왜 여자가 저런 글이나 영상 올렸을때...
-
9시 수업인데 9
지금까지 안자는 나는 머하는 머저리
g(x)=g(-x)???
없어졌네..
저거 알파=f'(a)가 맞는가가 질문인가요? 그렇담 X
맞는거아닌가요?
불연속이면 아님
밑에연속이라고 쓰여있으니까 맞는거 아닌가요?
아 내눈..맞는거 같긴함
역은 안되는데
저자체로는 가능..?
극한값도 존재하고 연속이면..
f(a+h)~ 의 극한이 성립한다는것은 f프라임(a)가 알파로써 존재한다는 의미이므로 f(x)는 a에서 연속이고 미분가능합니다
저기서 연속이라는 조건이 없어도 성립하지 않나요? 133g 님이 말씀하셨듯이 위에 주어진 극한 값이 존재한다는건 미분계수의 정의 및 미분가능성의 개념에 따르면,
주어진 식을 정리하면 F'(x)=알파 << 가 나오죠. 이 말은 즉슨 정의에 따라 생각해보면 X=a에서 미분계수가 존재한다는 뜻입니다. 즉 연속이라는 조건을 따로 고려하지 않아도 연속이라는거죠. 어쨋든 미분계수가 상수 알파로 존재하니까 주어진 함수 F(x)는 무조건 X=a에서 미분계수가 존재하고 연속입니다.
청점이 있다거나 X=a에서 불연속이거나 그럴 가능성이 전혀 없죠. 이런 개념이 100% 똑같이 쓰인 문제가 나형 미분 기출문제에 있습니다. ㄱㄴㄷ 문제였던걸로 기억하는데...
연속이라는 조건이 없으면 절대 성립하지 않아요. 위에 주어진 식은 미분계수의 정의가 아니잖아요. f(x)=x(x가0이아닐때),1(x=0) 이라고 정의하고 a=1로 두면 알파=1 이지만 0에서의 미분계수는 존재하지 않습니다.
제가 하고픈 말은 뭐 연속이니 불연속이니 이런거 고민할 필요는 전혀 없고 일단 저거는 맞다고 생각해요.
133g님과 응용통계13 님과 같은 논지에 대해 비슷한 질문을 다시 올리니,
그것에 참고해서 다시 설명해주시면 감사하겠습니다.
문제 자체가 말이 안되는거 같은데요
f가 미분가능한지도 모르는데 f 프라임이라고 쓸수도
없고 처음 식의 의미는 미분가능하다는 말이 없으면
그냥 평균변화율아닌가요
미분가능한지 모르는 상태에서는 f' 이라고 쓸 수 없지만 해당 조건이 미분가능하다는 것을 함의하고 있다면 f' 이라는 결론을 이끌어 낼 수 있지요....
새로 올린 글에서 댓글에 예시를 들었습니다만,
그리고 논점이 미분가능하다는 말이 없을때 저 극한식을 어떻게 미분계수와 연결시키느냐 입니다.