수리가형 고난도 문제 집중공략 자료
게시글 주소: https://orbi.kr/0002884709
심화특강 새로운 함수의 정의.pdf
수리가형 고난도 문제 집중공략 자료
"새로운 함수를 정의"하는 문제를 집중적으로 공략하는 자료입니다.
나중에 한완수 적분과통계 원고로 들어갈 부분입니다~
기출문제도 많고 제가 만든 자작문제도 많아요. 25페이지 정도 되고 총32문제 있습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
원합니다. 2
내가살기위해서
-
새르비 맞팔구 3
극도록 퇴화한 레버기는 얼버기와 구분할 수 없다
-
내 눈 ㅠㅡㅠ
-
3모 13315 5모 14311 탐구 공부가 어느정도 끝나서 수학을 하고있는데...
-
수능 다시 준비하면서 독학으로 하다보니 뭔가 스트레스 받고 집중 안되고 머리...
-
우선 등급은 작수기준 국어(화작) 4 수학(미적) 3(공통2틀,미적4틀) 영어...
-
딱히 자취한다는 생각이 안듦... 그냥 기숙사 사는거같음
-
정시인데 등급어그로꾼 댓글에 요즘 입시 모르는 나형충 등장 물론 작년 설경제는 빵이긴 했음
-
초딩 6년전체 따 당하고 나서 악몽도 자주꾸고 늘 불안해하고 친구 0명 자주울고...
-
오르비 안녕히주무세요 12
-
이래도 되는걸까.. 내 모든 걸 알고있음
-
새벽 드라이브 겸 스윽 가볼까
-
극단적인 곳은 성비 9:1인 이유가 있음 한의사 일 자체가 ㅈㄴ 힘든 (말그대로...
-
옵붕아 자? 27
.
-
D-41ㅇㅈ 4
내일 더 빡시게
-
속상해요... 0
속상하고 분하고 화나요..
-
일단 나부터.
-
요즘엔 오르비가 0
일기장이 되어버림
-
그럼에도 행복하게 살아야지
-
ㅋㅋ
-
최저러 공부법 1
3과목 국영탐(1개) 준비하면 되는데 하루에 한과목씩 돌아가면서 뿌실까요 아니면...
-
더데유데 1
더데유데 어떰?? 3모대비 풀었을 때 너무 실망해가지고;;; 더데유데 좋다는 소리가...
-
벌써몇달짼가~ 1
-
지금 역대급임
-
공부하는 와중에도 무의식적으로 다른 생각함 어젝밤에 본 웹툰 생각이남 집중이 잘...
-
자러갈지도 1
자러갈지도
-
오래된생각이야
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 8
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
인강은 쓸모없다. 13
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
-
답 470
-
ㅇㅋ ㅇㅋ, 그럼 오르비식으로 가볼게. 아 진짜 이거 말하면 좀 그렇긴 한데,...
-
저 조금 궁금해짐 오르비에 쓴 글들 gpt에 한번 돌려보면 뭐가 나올지도
-
자연수 하나를 저장하고 있는 기계가 있다고 하자. 이 기계에 저장되어 있는 숫자가...
-
이제 진짜 잔다 6
8시에 강기원 자받튀하러 가야됨
-
애니메이션 뭐에요..? ㄹㅈㄷ네
-
국수영 원점수 기준 전교 3등 국수영탐 원점수 기준 전교 2등 (추측)...
-
원래 수분감, 카나토미 이정도 하고 엔제 풀려고 했는데 교육청기출까지 하고...
-
메인글 뭐노 2
이제 봤네
-
레전드겠네 은케티아 유관 아스날 무관 ㅋㅋㅋㅋㅋㅋ
해원님 기벡 원고 넘기셧다고하는데 정확한 출판일자 언젠가요 ? 목이 빠지겟네요
그리고 이번엔 오타 없는거 자신있으신가요 ?
네 ㅎㅎ 직접 확인하셔서 오타없다고 후기좀올려주세요 ㅋㅋㅋㅋ
(현금 50만원정도를 투자해서 검토했습니다. 위 자료받아보면 검토진이 3배가량늘어났죠 ㅠ)
출판일자는 저도몰라요 ㅠㅠ 원고 주고나면 저랑은 별로 상관없이 돌아가서
오르비에물어보세요..
네 ㅎㅎ 올라오자 마자 사서 꼭 후기올릴께요
잘볼게여~^.^
열공하세요~~
저도 기벡언제쯤 나오는지 좀...
오르비에 문의를... 5월초라고 예상하고있습니다 저는
수고하셨어요 ㅋㅋ
다운받아봅니다ㅎ
윗글과는 상관 없지만..
뭐 하나 물어볼게요..
제 꿈이 고등학교 수학 선생님이 되는 것인데요..
수학을 좋아는 하지만 아직 그렇게 잘하지는 못해요..
근데 그럼에도 불구하고 제가 수학선생님이 될 수 있을까요??
이해원님 프로필을 보니 정말 수학적인 머리가 좋아 보여서 말이죠..
.. 수학도 노력하면 늘기야 늘겠지만... 수리영역 실력 말고
수학이라는 학문도 잘 공부 할 수 있을까요?.
제가 원래 학습동에 들어올 나이는 아닙니다만; 심심해서 여기 들어왔다가 우연히 님 댓글읽고 답글답니다.
저는 수학전공이 아니지만 수학과 과목을 많이 들은 경험이 있고 어느정도 수학과 관련된 전공을 하고 있습니다. 순수 수학 전공을 하시는 분하곤 의견이 약간 다를수 있어요. 제 생각은 수리 영역은 계산의 정확도, 순발력 등등의 요소가 강해서 수학을 잘 하는 것과는 조금 다릅니다. 수학 경시대회가 오히려 대학와서 배우는 수학과 비슷하지요. 하지만 역시나 수리 영역 문제를 잘 푸는 애들이 수학과 전공에서 더 좋은 성적을 거두더라고요.
수학과에서 학생들끼리 차이가 서서히 벌어지기 시작하는 해석학 같은 과목을 보면 두뇌적으로 타고난 걸 무시할 수 없습니다.(뭐..이건 타전공도 마찬가지에요.) 하지만 그래도 남들보다 더 노력을 하고 끈질기게 붙잡아서 극복을 하는 경우도 많이 봤어요.
고등학교 수학 선생님이라면 수학 교육과에서 듣는 수학과 전공만 들으시면 될겁니다. 그 정도는 스스로 노력만 하면 충분히 따라가실 수 있을거에요. 너무 걱정 마시고 꼭 원하시는 꿈 이루시길 바랍니다.
감사합니당^^
적분과 통계는 언제쯤 나와요??
기출은 안보고 그냥 26번이 복잡해 보여서 풀어봤는데,
ㄴ항목에서 g(4) = 0 이고, lim_{t -> 4} g(t) = 1 이 되어 거짓일 듯하네요.
그리고 31번은 문제에서 int_{from 0 to x} f(x) dx 를 int_{from 0 to x} f(t) dt 로 쓰는 것이 좋을 듯하고요.
저도 같은 생각이에요 26번에서 x=4는 함수의 변곡점인데... 거기서는 p(x)는 모든 점에서 미분가능해요
네넹 집에가면 확인해보고 수정할게요.. 지금은 고향에 내려와서 ㅋㅋ
해원찡 적통 책좀 빨리내주셈ㅋㅋㅋ 현기증 난단 말이에요
진짜 좋아요 완전 이해원님 팬이에여 대학가면 따라다닐거예여
ㅋㅋㅋㅋㅋ 감사합니다
기다리고 있겠습니다.
해설 없나요..... 해설참고 가 꽤나 있네요
감사합니다 ㅎㅎ