수리논술의 관점에서 2012학년도 수리영역 30번 바라보기
게시글 주소: https://orbi.kr/0002544939
간단하게 말하자면 a가 b보다 크거나 같으면 선분 PQ의 길이의 최솟값이 a^2 - b이고, a가 b보다 작으면 선분 PQ의 길이의 최솟값이 0이라는 것을 이용하여 문제를 풀게 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜냐하면 재밌잖아요 컷에 영향 안 줄 방법은 고민중입니다
-
독서, 문학, 언매 수1, 수2, 확통 영어 생윤, 윤사 사는 거 비추하시는 과목 있을까요?
-
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는예비 한국외대학생,...
-
미쿠였다네요
-
군나잇 1
늙은이 하루네시간공부도 힘겹구나..
-
크록스 1.5센치 > 발듸지게아파서 버림 반스 2센치 > 동생줌 컨버스 기본굽 >...
-
수능이 더이상 나에게 크게 의미가 있을까 나의 인생의 전부였던 수능이 이젠 멀어져간다
-
홈버튼 꾹 누르고 동그라미 그리면 다~ 알려주네 이거거든!!
-
반수할건데 1학기 12학점 들을 예정입니다 1학기 학교 다닐 때 아싸vs적당한친목...
-
이정도면 여르비 ㅇㅈ?
-
문제퀄 별로면 구체적 요구도 괜찮아욧 'ㅅ'
-
왜왔냐는 말은 ㄴㄴ
-
다들 마라탕 양에 대한 감각이 없어서 이 꼴남ㅋㅋ 양 개많아서 다들 남김..
-
ㅇㅈ 8
푸르댕댕들 인증
-
ㄹㅇ
-
진짜 이쁘냐고 물었어
-
님들 6
대가리 깨질거ㅜ같은데 해결방안 추천좀 해줘요오
-
선배님들 2
별표 처놓은 대학들 따로 제출하라는 게 없어 보이는데 진짜 안해도 될까여 좀...
-
국어 1컷 70점대 수학 1컷 70점대 영어 1등급 1% 과탐 1컷 40점 교육과정...
-
이 방법대로 적용하면 은근 귀찮은 경우의 수에서 금액관련 문제 전부 해결가능합니다
-
동생 쓰담쓰담 5
귀엽군
-
재수합니다 2
충북대 등록포기했고 진주교대 바로 앞에서 문닫혔고 수능날 평백 25내리고 재수라.....
-
어디가 이성적으로 맞는 선택이라 보시나요
-
뭐임? 신기하다
-
질문 ㄱㄱ 울학교에서 30명은 간듯ㅋㅋ ㅎㅇㄱㅎㅇㅌ
-
하츠오브 아이언 2
개 재밌어 보이는데 전쟁덕후로서 참을 수 없음
-
2년 남았다 4
국어 2컷 (이 ㅅㄲ 가 가장 문제) 미적분 100 영어 2 지1 98 물2 94...
-
화학러 고민 4
처음엔 고석용 선생님 강의로 쭉 갈 생각이었는데, 김준 선생님이 압도적이라는 얘기가...
-
난이도 둘중하나로나오면 머고를거임?
-
설대 필수 시절에는 투 하나만 꼈는데 이제 투하는 애들은 거의 두개씩 끼는게 변수임...
-
내가 맨날 배달 음식 시켜주고 심부름도 해주는데 왜 ㅈㄴ 까칠할까 나랑 13살 차이나는데
-
참고로 본인은 1년정지먹어서 글 못씀
-
ㅜㅠㅠㅠㅠㅠㅠ
-
시립대 1
추가모집 자연 949.80 이면 붙을까요??
-
이 신발 어때요 9
1,2,3번 다 이쁨?☃️
-
필기감도 좋고 울트라라서 화면 넓직한 것도 좋은데 그 펜슬 자체가 진짜 확실히 좀...
-
한양대 목표 재수생인데 내신 2.1이면 ㄱㅊ은거임?ㅜㅜㅜ… 수시러엿다가 6광탈하고...
-
22수능 대비 교재로 23 24 25 26수능 돌려막기
-
아빠가 수능 준비할때 이런 조건을 내거셨음 "수능 끝나고 대학 가면 자취시켜줄게"...
-
진짜눈만ㅇㅈ 29
다른사진올리면특정당할거거ㅏㅌ음 ㅎ
-
1. 트밀 끝나고 바로 러쉬 들어가나요? 2. 단과 라이브 기준 작년 내신 휴강 없었나요?
-
걍 살아야지
-
대성 새로 오신 것 같은데 어느정도 입지가 있는 것 같아서요 강대에서 유명한 분이셨나요?!
-
목동 시대인재 재종 정규반 개강했나요? 그리고 수업이랑 컨텐츠 말고 인강이랑 병행...
-
ㅅ. ㅍ
-
공부하러 감 1
-
끔찍한 상상 해버렸는데 14
양손에 스시모듬 들고 서빙하다가 혹시라도 실수해서 넘어져버리면 개닦이고 3만원...
-
수학 - 김범준 + a (아마 쫑느 라이브 중간합류할듯) 국어 - 정석민 사문 -...
-
근데 왜 뽀삐가 딜 1등이냐?
나카렌님 등장 ㄷㄷㄷ
근데 이것 증명은 좀 쉽네요... 시험장에서 직관으로 해도 되고 시간 남으면 증명해보여도되고...
세는게 좀 짜증나는 문제이지 수학적 사고력을 많이 요구하는 문제는 아닌듯... 오히려 19번이 좋았는데 언급이 잘 안되네요 ㅋ
사실 그렇게 어렵지만은 않죠.
그렇다면, a>b>1이고 x>0이면 a^x > b^x, a>b>1이고 x<0이면 a^x < b^x 인 것도 한번 증명해 보세요.
이게 가장 elementary proof인지는 모르겠는데...
밑이 1보다 크면 증가함수라는 lemma를 이용할 수 있나요?
proof) 첫번째 명제에 양변에 b^x을 나누면 (a/b)^x >1 이고
여기에 밑을 a/b로 하는 지수함수 f(x)를 도입하여
f(x) > f(0) 임을 증명하면 되는데 이는 밑인 a/b가 1보다 크기 때문에
f : increasing at x ∈ (-∞,+∞) 이고 x>0 이므로 참이다
두번째도 같은 식으로 증명하면 되는데 lemma를 안쓰고 증명이 가능한지는 모르겠어요 ㅠㅠ
그 lemma를 증명하면 되지 않을까요?
1보다 큰 실수 r에 대하여 r^x는 증가함수이다.
proof) r^x를 x에 대하여 미분하면 r^x * ln r 입니다. 한편 ln x를 미분하면 1/x이므로, ln x는 증가함수임을 알 수 있고 따라서 1 0이므로,(일단 고등학교 과정에서 다루고 있으므로, 이 정도는 어쩔 수 없이 인정하겠습니다. 증명을 하자면 못 할 것도 없긴 하지만요...) r^x * ln r > 0을 얻고, 따라서 r^x는 증가함수입니다.
보충 - 실수 r에 대하여, r^x > 0 의 증명 : r이 유리수일 때는 r^x가 양수임을 증명할 수 있고, y=r^x가 하나의 선으로 이어지는 그래프가 되도록 실수 지수 x를 정의하므로 어떤 실수 x에 대해서도 r^x는 양수입니다.
사실 이 명제를 증명하려고 하게 되면, 고등학교 과정에서 증명하지 않고 두리뭉실 넘어갈 수밖에 없었던 부분과 만나게 되는 측면도 있습니다. 그런 의미에서 제가 부탁드린 두 명제의 증명은 그다지 좋은 문제라고 하긴 어렵겠네요;;
lemma가 미분을 이용하여 증명이 가능하긴 한데... 저 lemma를 안쓰고 증명이 가능한 가장 ele pf를 찾아봐야겠네요! ㅎㅎ
아마 유리수 지수에 대해서는 미분을 사용하지 않고 가능할 것 같고, 실수 지수에서는 미분 또는 극한과 연계되지 않는 증명은 불가능하지 않을까 합니다. 실수 지수의 정의 자체가 극한 또는 미분과 관련이 있으니까요.
아 그렇군요... 실수 지수의 정의를 유리수열의 극한으로 하니까... ㅠㅠ