(문제스포)출제자는 5월 예평 18번문제를 어떻게 만들었나?
게시글 주소: https://orbi.kr/00015378321
주의사항: 이글에서는 다소 직관적사고를 사용함
이 문제는 풀어보신분들은 아시겠지만 미분계수의 기하학적인 의미를 이용해서 풀리는데요.
이 문제는 어떻게 만든걸까요?
이 문제를 만들때 f(x)라는 함수를 처음부터 정확히 알고있는 상태에서 만드느냐
그렇지않느냐로 나뉘잖아요? 만약 후자라면 문제에서 주어진
2≤f(x)≤3x, f(1)=2,f(2)=6 이라는 조건을 만족시키는 어떤 함수f(x)가
뭔가 존재하겠지? 라는 직관만 가지고 문제를 만들게되기때문에 꽤 위험하죠.
왜냐면 이런함수가 실제로 존재안할수도 있는거니깐요.
그래서 이문제를 어떻게 만든건지 추론해보려면 문제속의 f(x)가 어떤 함수인지를 알아야돼요.
기울기가 다른 두직선사이에 존재하며 두직선위의 점을 지나는 함수는 뭐가있을까요?
먼저 다항함수를 생각해봅시다!
우선 위의 그림을 보시면 아시겠지만 2차함수나 3차함수일리는 없겠죠?
최소 4차함수라는걸 알수있어요. 근데 4차함수라면 2x를 밑으로 뚫고 내려올거니깐 안되잖아요?
그러니까 다항함수보다는 초월함수일 가능성이높아요.
지수함수와 삼각함수를 가지고 생각해볼건데 직관적으로 생각해볼게요.
지수함수는 그 특성상 굉장히 기하급수적으로 증가하거나 감소하는 특성이 있잖아요?
그래서 지수함수가 포함되어있는 함수식은 아무래도 두직선사이에서 얌전히 있을거같지가 않아요.
그래서 지수함수보다는 삼각함수에서 찾아봐야돼요.
sinx는 문제속의 그래프처럼 구불구불한 형태의 그래프기때문에 뭔가 가능성이 있을거같아요.
그래서 sinx가 포함되있는 함수식중에서 찾아야되는데 sinx+1이나 -sinx는 단순히 평행이동 대칭이동이니까
근본적으로 모양이 변하지않겠죠? 그래서 함수식에 x를 도입할건데요. 함수식이란게 결국 더하거나 빼거나 나누거나
곱하거나 지수로 올리는거니까
1.x+sinx
2.x-sinx
3.sinx^x
4..x^sinx
5.sinx/x
6.x/sinx
7.x*sinx
정도의 후보가 있네요. 이중에서 하나를 선택해서 그려봐야하는데
1번 2번은 더하는거나 빼는거나 형태가비슷하니까 생략하고 3번4번도 뭔가 비슷할거같네요.
마찬가지로 5번 6번도 왠지 비슷할거같네요. 그래서 그냥 7번으로 한번 가봐요! ㅋㅋ
(그냥 랜덤으로 고르는거니깐 아무거나 갈게요)
f(x)=x*sinx라두면 한가지 알수있는게 sinx는 -1과 1사이의 값만을 가지기때문에
-1≤sinx≤1 이되고 x를 각각곱해주면 -x≤x*sinx≤x 라는걸 알수있네요.
쉽게말해 x*sinx는 -x와 x 사이에 존재하는 함수라는 얘기죠.
(구글에 아무리 찾아봐도 y=x, y=-x 그래프가 마땅한게 없어서 이걸로 쓸게요ㅠㅠ)
그러면 이 그래프의 개형을 유추하기위해선 f(x)가 직선 x,-x 와 만나는 점이 있는지를 조사해야돼요.
x*sinx=x -> sinx=1 이므로 f(x)=x*sinx와 y=x와 만나는 지점은 sinx=1 의 해라는얘기고
마찬가지로 f(x)=x*sinx와 y=-x가 만나는 지점은 sinx=-1의 해라는 얘기에요.
즉,함수 f(x)는 (π/2,π/2),(3π/2,-3π/2),( 5π/2,5π/2) 등의 점을 지나게 돼요.
그렇다면 저 점들에서 f(x)의 그래프는 어떻게 그려질까요? f(x)는 실수전체에서
미분가능하니까 부드러운 곡선형태로 그려져야돼요. 또한 -x와 x의 경계부분을 넘지못하니까
-x나 x에 접하는 형태로 그려지겠죠?
이런식으로 그래프를 그려보면 아래그림처럼 그릴수있어요.
여기서 알수있는사실은 그림에 나와있는것처럼 f'(π/2)=1이고
f'(3π/2)=-1이고 f'(5π/2)=1 이라는 사실을 알수있죠(도함수를 구해서 계산해보면 실제로 저렇게나와요)
이 아이디어로 만든문제가 5월 예비평가 18번문제가 아닐까 싶네요.
간단하게 요약하면 이문제의 아이디어는 y=x*sinx 와같은 함수를 "그리는" 과정에서
나왔다고 볼수있죠. 이문제는 수식적으로도 풀리고 기하학적으로 풀리는데요
출제자가 기하학적인 풀이를 의도하고 문제를 만들었는데 결과적으로 수식적으로 풀리는
것일수도있구요. 처음부터 수식적인 풀이를 의도하고 만들었는데 우연히 결과적으로
기하학적으로 풀리는것일수도 있을거같아요.
ps. 미분이라는게 곡선에 접하는 접선의 기울기를 구하기위해 나왔잖아요?
즉, 미분이 나오기 전에도 곡선이라는개념이 있었으니까 위로볼록한곡선,아래로 볼록한 곡선의 개념도 있었겠죠
그런데 xsinx가 -x≤x*sinx≤x라는사실과 (π/2,π/2),(3π/2,-3π/2),( 5π/2,5π/2)등의 점을 지난다는것은
굳이 미분이 없어도 알수있는 사실이니까 함수 xsinx가 실수전체에서 미분가능하다고 "가정"을 하면
미분이 없어도 일부점들에 대해서는 접선의 기울기를 알수있지않았을까 생각되네요.
미분이 나온뒤에 정확한 계산을 통해서 검증이 되는거구요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
평생독신으로늙어죽어버려....
-
수강신청 멸망함 0
이게현실일리없어요
-
변표나오고 6칸 > 2칸돼서 포기했었는데... 묵묵히 5수.
-
엄마가 전에 그랬엇는데 ㄹㅇ인가 흠
-
[고2, 고3 내신 대비 자료 공유] 2026년 특강 국어 고3 화법과 작문 기출 문제, 고2 문학 분석 기출 문제 자료 배포 0
안녕하세요 나무아카데미입니다. 2026년 특강 국어 고3 화법과 작문 기출 문제와...
-
투사탐 사1과1 0
작수 지구 4페이지는 2개밖에 못풀고 맞추고 앞에 많아 틀려서 3떠서 일단 국수...
-
생윤사문vs쌍사 0
작수 생윤1 사문높3사문 등급이 잘 안오르고 성향도 잘 안맞는거같아서 쌍사로...
-
홈페이지로 재종반 지원하려는데 홈페이지는 닫혀있어서 전화로 여쭤보니 카톡으로...
-
좋아한다는 뜻인가요
-
수학 22번이 어려워지기 시작한 게 20수능부터인가요 3
예전에는 22번이 지금 같은 포지션이 아니었다고 들어서
-
변표때문에 수능한번 더볼뻔한사람의 컨설팅 후기(정시기다리는) 4
성대 합격했습니다. 이번입시에 놀랍게도 중대경영 7칸 서성한 문사철이 2~3칸...
-
유급 난이도 어떤지 아시는분 계실까요?
-
모닝여캐투척 4
음역시귀엽군
-
언매 벼락치기 0
언매 개념 일주일이면 됨??
-
생기부 미련 없는데 제가 못 본 단점이 있을까요? 7주 정도 꽉 쓸 예정
-
제발요..
-
920.374인데 솔직히말해서 경북대 다군에 있었으면 가군 서성한라인 하나쯤은...
-
에혀 애초에 연대 간다고 약속하고 학교도 자퇴한건데 엄마는 내가 학교 자퇴햇을때...
-
안녕하세요 뉴비 인사올립니다! 반갑습니다 :)
-
또선생 1
또선생도 많이 하던데 뭐가 더 나을지 모르겠네
-
공부하러가즈아
-
강민철 언매 0
문제편이랑 익힘책은 강의에 안 올라오고 따로 해야하나요?
-
건글 원래 돌아야했던 두명을 못돌림 말했듯이 건글은 대형과가 아니라 이런거에 컷이 영향을 크게받음
-
고심리 핵빵이라더니 결과는 서성한 최초합급이고 고경영 631점 합격이라는게 팩트야?...
-
어휴..
-
인스타에서 표점 같으신 분이 공동 수석이라고 암튼 goat
-
대부분 언매하시나요?
-
진학사 3칸도 많이 뚤렸네여 ㄷㄷ 대다수가 예상 컷을 499는 넘겨야 했는데 ㅋㅋㅋ...
-
김지영 V올인원 1
김지영 조정식 고민임
-
이제 다시 공부시작하려는데 기코 > 뉴런 > 드릴 및 양승진쌤 엔제, 시중의 엔제들...
-
4월부터 반포학원가에 '킥보드없는 거리'…"전국 최초" 4
(서울=연합뉴스) 정준영 기자 = 서울 서초구(구청장 전성수)는 오는 4월부터 반포...
-
필요한 학과 서울대 정외 지균 인문 지균 역사교육 아동가족 윤리교육 연세대 문헌정보...
-
사람들 인식이 궁금
-
거짓말치지마 들은바로는 첫화로는 어머니가 돌아가지고 조금지나서는 자기랑...
-
ㅈㄱㄴ 있다면 어떻게 신청하는지도 궁금합니다
-
높공으로 옮김 ㅋㅋ…. 하 현타온다 시간이랑 돈이 아깝네
-
기초약화학에서 줌달일반화학으로 수업하는데 제가 화학을 공부한적이...
-
아마 25년 오르비 막글이 되지 않을까 싶긴 한데 과외하면서 진짜 많은걸 느끼게...
-
논술 vs 오로지 정시 17
수능 결과 4에서 6등급만 있는데 올해 수능공부 같이 하면서 논술 해보는게 나을까요...
-
했습니다
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번을 찾습니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
"수의대." 4
"동무는 어느 쪽으로 가겠소?""수의대."그들은 서로 쳐다본다. 앉으라고 하던...
-
예비 못 받아서 기대도 안 하고 있었는데 막날에 전화받았네요 원랜 반수하려고 했는데...
-
오늘의 업적 2
기숙사 호실 신청 성공 ㄹㅈㄷ goat와 랜선 옯만추 성공
-
얼버기 5
-
콜드 바닥 밑에 지하가 있었네 좀만 버텨보다가 탑승해야지
-
백전승의 사나이 0
백 전승임
-
물론 입댄건책임져야하니까~ 원샷함 기분좋다~~~ 집에서 주스병에 입대고마시면...
ㄹㅇ 갓
ㅋㅋ 착상은 거기서 나왔을 수 있겠네요
문송합니다ㅠㅠ
문송