[이동훈 기출] 한 평면에 포함되는 3개의 공간벡터 (공도회 심층분석)
게시글 주소: https://orbi.kr/00012417177
이동훈기출_개념편_한 평면에 포함되는 3개의 공간벡터에 관하여.pdf
이동훈 기출문제집 atom 책 페이지
---
공도회로 알려진 수능 실전 이론에 대한 분석입니다.
이동훈 기출문제집의 부교재(무료PDF)로 제공되는
42개의 수능 실전 이론 중에서 마지막 주제에 해당합니다.
나머지 41개의 주제들은 7월 초 ~ 8월 말에 걸쳐서
이동훈 기출문제집 atom 책 페이지를 통하여
꾸준하게 제공될 예정입니다.
( -> http://atom.ac/books/3888/ )
---
공도회를 소재로 하는 문제는
평면의 결정조건 + 각의 크기의 최대최소
로 접근하는 정형화된 풀이가 존재합니다.
(사실 모든 수능 문제의 풀이는 공식화되어 있는 것으로 봐야겠지요.
교과서에 바탕한 전형적인 풀이를 적용하면 항상 풀리게 출제되니까요.)
일차결합의 관점에서 공도회를 해석하면
벡터의 정의, 연산부터 내적까지,
전 과정을 이용할 수 밖에 없으므로, 공도벡을 통합적으로
학습할 좋은 기회가 됩니다.
(만약 벡터가 평면의 법선벡터로 주어지면 평면의 방정식까지
포함하게 됩니다.)
사실상 공식화 된 이론으로 문제를 빠르게 해결하는 것도 중요하지만,
그 이론의 증명과정에 대한 이해와 연습도
수능 학습에 반드시 필요하다고 생각합니다.
실전에서 어떤 상황이 닥쳐도 헤쳐나갈 수 있는 힘을 키워야 하니까요.
이동훈 기출문제집에 수록된 모든 공도회 관련 문항의 해설은
위의 이론에 기반하여 작성되었습니다.
공도회에 대한 해석이 타 기출문제집과의 가장 큰 차이점이고,
위의 설명을 낯설고 어렵게 생각하는 분들도
적지 않은 것으로 알고 있습니다만,
사실 위의 이론을 알아두면 벡터의 내적 전반에 대한
이해의 폭을 넓힐 수 있습니다.
제가 기출문제집의 이론편을 만드는 이유는
이동훈 기출문제집의 해설이 어떤 통일된 관점과 이론에 바탕하여
작성되었는가를 보여드리기 위함입니다.
장기간에 걸친 수능/평가원 기출 해설 작업을 통해서
축적된 생각들을 체계적으로 보여드리고 싶은 욕심도 있습니다.
올해 여름에 무료 공개되는 42개의 실전 개념은 개정 과정을 거쳐서
2019 이동훈 기출문제집에 수록될 예정입니다.
학습에 도움이 되길 바랍니다.
감사합니다~ :)
+ 참고로 42개의 주제는 다음과 같습니다.
(01) 수학2(함수) 유리함수, 무리함수와 격자점
(02) 수학2(수열) 등차등비수열의 전형적인 문제 (+등차중앙, 등비중앙)
(03) 수학2(수열) 합에서 일반항 유도하기
(04) 수학2(수열) 수학적 귀납법으로 증명하기
(05) 수학2(수열) 발견적 추론 (수를 나열한다.)
(06) 미적분1(수열의 극한) 수열의 극한과 급수의 계산
(07) 미적분1(수열의 극한) 등비급수와 중등기하
(08) 미적분1(함수의 극한과 연속) 함수의 연속에 대한 전형적인 응용문제
(09) 미적분1(함수의 극한과 연속) 사이값 정리의 활용
(10) 미적분1(다항함수의 미분법) 미분계수와 도함수의 다양한 문제들
(11) 미적분1(다항함수의 미분법) 접선의 방정식 (+최단거리)
(12) 미적분1(다항함수의 미분법) 평균값 정리의 활용
(13) 미적분1(다항함수의 미분법) 3차, 4차 함수의 그래프 (+인수정리)
(14) 미적분1(다항함수의 미분법) 미분가능성 (+절댓값)
(15) 미적분1(다항함수의 미분법) 미분법의 방정식, 부등식에의 활용 (문과)
(16) 미적분1(다항함수의 적분법) 구분구적법을 정적분으로
(17) 미적분1(다항함수의 적분법) 적분과 미분의관계, 미적분의 기본정리에 대한 전형적인 응용문제
(18) 미적분2(지수함수와 로그함수) 지수로그함수의 수학1 내적 연관
(19) 미적분2(지수함수와 로그함수) 삼각함수의 수학1 내적 연관
(20) 미적분2(삼각함수) 삼각함수, 지수로그함수의 극한과 중등기하
(21) 미적분2(미분법) 역함수의 미분법 총정리
(22) 미적분2(미분법) 사이값 정리, 평균값 정리의 활용
(23) 미적분2(미분법) 합성함수의 연속성과 미분가능성
(24) 미적분2(미분법) 접선의 방정식 (+변곡점, 점근선의 관점)
(25) 미적분2(미분법) 초월함수 그래프 (+빠르게 그리는 방법)
(26) 미적분2(미분법) 이계도함수에 대하여 (+함수의 볼록성)
(27) 미적분2(미분법) 미분법의 방정식, 부등식에의 활용 (이과)
(28) 미적분2(적분법) 치환적분법, 부분적분법의 전형적인 응용문제
(29) 확률과 통계(순열과 조합) 합의법칙, 곱의법칙 (+수형도)
(30) 확률과 통계(순열과 조합) 조합, 중복조합, 순열, 중복순열에 대하여
(31) 확률과 통계(확률) 확률의 계산 (+밴다이어그램)
(32) 확률과 통계(확률) 확률의 전형적인 응용문제 (+개념정립)
(33) 기하와 벡터(이차곡선) 이차곡선의 정의와 중등기하
(34) 기하와 벡터(이차곡선) 교과서에는 없는 이차곡선의 성질
(35) 기하와 벡터(평면벡터) 벡터의 일차결합 (+개념정립)
(36) 기하와 벡터(평면벡터) 벡터 내적의 최대최소 (+상수변수)
(37) 기하와 벡터(공간도형) 공간도형을 관찰하는 법 (단면화, 정사영, 전개도)
(38) 기하와 벡터(공간도형) 공간도형 개념정립
(39) 기하와 벡터(공간벡터) 좌표공간 개념정립
(40) 기하와 벡터(공간벡터) 공간에서의 직선, 평면, 구의 방정식 (+위치관계)
(41) 기하와 벡터(공간벡터) 두 평면이 이루는 각의 크기를 구하는 3가지의 방법
(42) 기하와 벡터(공간벡터) 한 평면에 포함되는 3개의 공간벡터에 관하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이건 서울대 써야겠네
-
그러면 경제대신 절평과목 고르고 발뻗잠 했을텐데
-
ㅈㄱㄴ 막 수시 4차 찐찐찐막추합 이렇게 붙어도 정시 아예 못 쓰나요
-
갑자기 2
맞팔구하기
-
경인교대 꼭 가고싶은데
-
아따맘마 보셔씀
-
요즘 심심했는데 잘걸렸다 무릎 꿇고 사죄해도 합의 안해줘야지ㅋㅋ
-
진학사 교대 0
지금 진학사 교대 컷 어떤 것 같나요? 경인교대를 정말 붙고 싶은데...컷이 너무...
-
무슨 결말이 죄다 병걸려 죽거나 자살하거나 가정 파탄나는 결말밖에 없음.. 내용도 겁나 우울함..
-
그립진 않다
-
참고로 연논 2차시험 재시험 바라던 애들한테 별 이득 없음 0
중복합격자 포함시키는데다가 결정적으로 2차시험은 추가합격 없음 연대가 그냥 겉으로만...
-
어무니랑 볼꺼임 ㅇㅇ
-
ㄹㅇ
-
2차 추가모집 안한다길래 남겨봄. 10명 정원일 때, 1차+2차 시험 중복 합격자...
-
문과는 무조건 상경가야 그나마 취업이라도 된다는 사람도 있고 중앙대가 경희대보다는...
-
컵라면 사려는데 장칼국수 보이자마자 민지 칼 드립을 치는 오르비 댓글이 아른거렸어
-
구글이랑 네이버 계정 바꾸려하는데 네이버는 아이디 이미 만들어놨는데 구글계정을...
-
올해 장재원 김현우 투커리 탔는데 재원이 숙제가 좀 적은 편이라 무난하게...
-
실채점 감안하더라도 약간은 마음 놓아도 괜찮을까요?ㅠ 해외여행 계획 있는데...
-
노래 잘한다.. 어그로 죄송합니다 문과 대학 라인 잡아주세요
-
ㅈㄱㄴ
-
뭔 시발 2킬5뎃인데 존나세네
-
점공 하신분들 1
최저충족률 어떤가요? 충족률 직년보다 높아질까요?
-
오늘은 10시에 자야징 14
-
대구게이클럽 주소좀 18
어그로성공 내일아침해장으로뭐먹을까요
-
https://gb.go.kr/open_silguk/silla_history/home...
-
나형 30은 통합 몇 번인가요? 애매하면 21~22 사이라고 해주셔도 Ok
-
뭐가 문제?
-
메테오 메테오 3
전국 사람들이 외치네 메테오
-
수능치기 전 전형만 보고 문과 난이도 4~5/5 이과 난이도 1/5를 예상했는데...
-
다들 있는지도 모르게 발소리도 안났음 무슨 노이즈 캔슬링인줄 새삼 신기하네 내가...
-
3-1 내신 개꿀?팁 10
상평과목 수를 적게 선택한다 본인은 3-1때 상평과목 6개였다 언매 미적 확통 영어...
-
2017수능대비 마닳 판매자 등장..ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
자유롭게 ㄱㄱ
-
미띤넘이네 7
ㅋㅋㅋㅋㅋㅋㅋ
-
뭔가 대학 물리학 특유의 스멜이 나네요
-
첫 정답자 1000덕 드리겠습니다!
-
저기가 감독관자리인데요...전날에 몸살걸려서 안그래도 집중력 떨어지는데 자리까지...
-
다른강사분들과 비교했을때 어떤가요??? 대성마이맥에서 유사한 선생님이 누군가요???
-
이 분 채널 꽤 괜찮음
-
음식물 쓰레기 어떻게 버리냐고 물어보시네….
-
원래 의대준비하다 망해서 문과로틀었음 지망학과는 정치외교학과 세무학과 이정도이고...
-
25정원이랑 비교했을때 변동 양상이 어떻게 되나요? 26 학생 많으니까 정원 늘리고...
-
아니 제 성적으로 메가 대성 둘 다 채점했는데 일단 백분위 총합은 대성이 4~5점...
-
중2 사랑 어떰 10
엄마랑 보면 쪽팔려 디지나
-
난 늙어서 친구랑 눈사람 만들다 지쳐서 들어왔는데..
-
ㅠㅠ 이거 양 때려넣는거 말곤 답없나
-
엄마가 뭐라도 하랬는데 솔직히 놀고 싶음..... 1년동안 정신병 걸리는줄 알아서...
오래 기다리신 만큼 완성도 높은 원고로 보답하겠습니다. 감사합니다~ ^^
기출문제집 매우 잘 보고있습니다
이 책들을 산 후로 비로소 수학공부를 제대로 하고 있다는 느낌을 받았어요
감사합니다. 공부하시면서 의문이 드는 점이 있다면 언제든지 문의하여주세요. 더 좋은 책을 만들기 위하여 노력하겠습니다. ^^~
문제집 잘 쓰고 있어요. 좋은 자료들 감사합니다
더 좋은 책을 만들기 위하여 노력하겠습니다.
내용 너무 좋습니다^^