판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
게시글 주소: https://orbi.kr/00011521076
칼럼쓰러 돌아왔어요!
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? : http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
저번 칼럼은 이거였어요!!
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
정답 갑니다.
이런거죠. 자 그러면 이제 y축 평행이동이 남았습니다. 한번 해볼까요?
이렇게 되면, 함수의 모든 y값은 0보다 큽니다. 만약 판별식이 0보다 크면
Y축 평행이동은 아래쪽으로 진행되겠죠! 그렇다면 x축과의 교점이 생길겁니다.
이렇게요!
이제, 굳이 판별식의 결과를 외우지 않아도 됩니다.
그림으로 이해하고 수식으로 생각하면 되잖아요!
제가 하고싶은 것은 이거에요. 생각으로 이해하는 것.
외우긴 외워야하겠죠. 하지만 쉬운 언어로 외우면 되잖아요
굳이 모두가 어려워하는 형태로 외워야하나요?
자 그렇다면 오늘도 다음주제 갑니다.
빡세다.. ㄷㄷ
이번 칼럼주제는 굉장히 쉬워요! 여러분은 좌표평면을 어떻게 생각했을까?
그것에 대한 질문입니다. 답은 다음 칼럼에서 쓸게요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 3
삼김 맛 추천좀요 낼 점심임
-
현역이고 지그 수학 기출풀기 바쁜데 주변에는 기출은 커녕 수특 푸는 애들이...
-
일본 노래에는 감동이 있다 가슴이 웅장해진다 진짜
-
근데 내 물리 실력이 처참해서 맨날 쫄튀함
-
조회수가 시원찮길래 어그로성 제목 달았습니다 죄송합니다... 반수 해 보신 분들께...
-
안녕히 주무세요 1
졸려요
-
26 정시... 0
이번에 결국 의대 정원 원상복구가 될것같은데... 이렇게 되면 지금 26정시는...
-
잘자 담에보자 4
사랑해~
-
내일 어떻게든 연명하려면 지금이라도 자야하는데 그냥 자기가 싫다 누가 좀 재워죠
-
망했네온 2
난 레전드병신이야
-
명강의임 이만한 확통 강의가 없음
-
물리는 잡기 쉬운데 화학은 잡아본 적이...
-
수학 시발 1
못하겠다고 머리가 안 된다고 능지 딸린다고 ㅠㅠ 3대째 문관데 나형 왜 없앰 ㅠㅠ
-
좋아하는애 1
이름만 알고 같은 독서실 다니는데 가망없겠지.. 고3이야
-
내신 휴강 끝나면 들을건데 수학 라이브 ㅊㅊ좀 3모 81임 재수생
-
대놓고 저작권 침해하는 30만짜리 범법 대형 채널은 막을 수 있지 않나? 요즘에는...
-
1시간 날리는게 너무 아깝다
-
고민되네 0
본인 24수능 쳐서 백분위 등급 순서대로 87(3), 98(1), 3, 97(1),...
-
기출+수특 6모까지하고 6모끝나고 n제하는거면 늦은거임? 햔재 수분감 스텝1...
-
이건 뭐임? 속쌍임 겉쌍임?
-
교환학생으로 아이비리그 쪽으로 준비하는 오르비 학생들도 꽤 있겠죠? 0
서울대는 유펜, 연세대는 코넬대로 교환학생을 갈 수 있는데 준비하시는 분들이 꽤...
-
나는 학교를 다니는게 맞나 시바
-
난이도 : 8.5/10 솔직히 기분이 매우 나쁜 문제였습니다....
-
객관적인 난이도만 보면 뭐가 더 어렵나요?
-
울려퍼져라!
-
허슬테스트 1회차 풀었는데 10개 틀림... 심지어 시간도 10분 초과 됐다고 아...
-
음...아직 과외 받을까 생각중이긴 한대 비용이 너무 부담되서 한완수 책으로 함...
-
님들 라식하셈 2
심봉사 눈 뜬 기분 ㄹㅇ
-
문디컬로 약대 희망하는데 영어1 사탐 둘다 만점이라 했을때 국수 평균 몇 개 정도...
-
다들강조함..
-
수학잘하는사람한테 물어보면 공통은 기출+n제 몇개만해도 걍 다맞는다 그래서...
-
여친구함 6
쪽지좀
-
시발점 미적 0
공통 공부하느라 미적 유기했는데..미적은 뉴런보다는 시발점부터 들어가야 맞을까요?...
-
내 머릿속에서 나가
-
내 각오가 무너질거 같아서 못바꾸는 중;;
-
미친짓임?
-
아 엄마 잔소리좀그만 10
아아
-
3모는 턱걸이로 1 뜨긴했는데 평소 1~2 왔다갔다하고 주로 높2가 제일 많이 나옴...
-
죠죠뽕 캬
-
제가 작년 하사십 시즌1을 구매해서 풀었는데 생각보다 시간을 많이먹어서 딴 과목...
-
밥그릇에 햇반 양배추 참치캔 계란 때려넣고 전자렌지 4분 돌려먹어요 대충 간장 참기름만 뿌려서...
-
방학동안 듣다가 딴 강사로 갈아탔는데 퀄이 ㅈㄴ 비교돼서 방학때 들은거 시간 아까움 진짜
-
근데살이너무쪘다 1
좀빼야지 라는 말을 몇달째 하는지
-
아니 가계도 돌연변이 이런거보다 막전위만보면 턱턱막히네;; 우짜노 ㅠㅠ
-
어설프게 공부해서 주관식으로 나오면 그냥 망함
-
애들은 강의 따라기도 벅찬데 교과서에만 있는 내용을 시험에 쳐내실거면 수업은 왜한건데요
-
화학 3
고2 정시파이턴데 화학선택하면 ㅈ되나요? 화학이 제일 재밌어서요
-
술자리 빠져도
-
옛날 신문기사 보다가 나온 기사 중에 사법시험 합격하고 30년만에 연수원 입소한 분도 있었군요. 2
https://newslibrary.naver.com/viewer/index.nave...
항상 잘 보고 있어요
청의미님
ㅎㅅㅎ..
생각 많이 하셔야합니다
기본은 생각이지요. 저는 그걸 전달하고싶어요.
좋은 내용 감사합니다!! 근데 곡선 위의 접선 해설 어쩌구 글 링크가 이상한 곳으로 가져요ㅠㅠㅠ
헐 뭐임... ㄷㄷㄷ 수정할게요 감사합니다.
역함수2의x승으로 보면 a가 1이면 상수함수로 정의되고 a가 o보다작으면 함수로 정의되지 않기때문아닌가염?
왜 함수로 정의되지 않나요?
함수가 정의되려면 어떻게 해야할까요?
좌표평면은 무엇인가요?
이렇게 질문하시면 완벽하십니당.
정답이십니다..만 a가 1이 아닌 이유를 좀더 생각하실수 있을것같아요!
a가 1면 상수함수로정의되는걸 굳이 지수함수에도 포함되게 정의되지않게하기위해서....?
우리는 항상 이 설명이 쉬운가 어려운가 고민해야해요.
수능 시험장에서 기억할만한 성질의 것인가.
이것을 고민해야합니다. 기억하려면, 적어도 헷갈리지않으려면
최대한 쉬워야한다고 생각합니다.
a.b가음수여도함수는 함수입니다.
양수여야하는이유는 중학교때는 지수법칙을
자연수지수에서만 정의했는데 실수일때까지 확장하기위해 여러가지정의를하고
밑이 음수인경우는 예외가생기기때문에 밑조건을 양수로둔거고 밑이1일땐 상수함수가되버립니다.
니니.... 이거 좀 그런경우가있어요..ㅠㅠ
무슨경우를말씀하시죠?
밑이 음수인 경우는 예외가있는게 어떤경우죠?
{(-2)^2}^3/2의경우에는
자연수지수일때처럼 바꿔서 계산할때
그냥계산할때 8=/=-8처럼 결과가 달라진다는 의미입니다.청의미님의 말씀은 무엇이죠?
다음칼럼을 기대하세요! 라고 말하기위해서 말을 아낍니당
근데 정말 좋은 생각이셔요!
저또한 그 생각과 비슷합니다.
하이드님. 생각과 고민이 공부의 기본입니다.
이렇게 생각하고 고민해서 이뤄낸 개념은 쉽게 잊지않아요.
저는 이런 생각을 가지고 이렇게 덧글을 달고있지요 ㅎㅎ
이게 옳다고 생각합니다. 그리고 하이드님께서도 잘하신것을 믿어요.
답은 반드시 다음칼럼에 올려드리도록 하겠습니다!
http://orbi.kr/00011588911
로그는 본래 1/x의 적분형에서 정의된 함수이기 때문에...?
아아아아아아?????????
좀더 자세히 설명해주시겠어요?
1/x의 그래프를 보면 알겠지만, 이것은 0에서 적분 불가능하기 때문에 b가 0보다 작은 경우는 있을 수 없습니다. 애초에 논할 의미도 없고요
a의 값은... 생각 좀 해볼게요
어렵네요 갑자기
좋다.. ㄷㄷㄷ
하지만, a^x=b에서 a가 0보다 크면 b는 항상 x가 어떻게되던 0보다 커요.
근데 되게 해석이 좋으신듯합니다.
원래 시간상으론 그게 먼저예요
1/x를 적분하려고 보니, 우리가 흔히 쓰는 다항함수 적분법이 안통하는 겁니다
분명히 적분은 될텐데 말이죠
그래서 아 모르겠다 일단 뭔지 몰라도 만들어놓고 그냥 쓰자... 하다가 보니, 웬걸 이게 지수함수의 역함수인 겁니다
그러나 교과서에서는 거꾸로 가르치죠
네 맞습니다.
만약 a까지 그것으로 설명할 수 있으시면.. 대박적
하지만 a는 적분에서 e로 결정되어있을것 같아요..ㅠㅠ
매우 좋은 생각인듯합니다.
0보다 큰 이유는 잘 모르겠어용 ㅠㅜ a가 1이아닌 이유는 y=1^x 일땐 함수이지만 그 역함수인 밑이1 인 로그함수를 그려보면 x=1이고 이건 함수가 아니니까 안되는거 맞나요??
더 생각해볼 여지가 있습니다.
http://orbi.kr/00011588911
칼럼잘보고있어요! 보면서 느끼는데 이런 무심코 지나쳤던 개념을 익히는건 수학 1,2등급에서 고난이도문제를 풀기위한 사고방식에 도움되는거겠죠? 어느정도 고지에 안이른 사람이라면 저런 세세한부분보다 일반적인 문제풀이양을늘려 3이나4 등급에서 2등급정도로 정착하는게 우선인부분인지 궁금해요!.. 작년에 개념과 원리에 너무집착하다 문제푸는 양도 충분치않아서ㅠㅠ 재수하게된거같네요
ㄴㄴ 일단 세부적인 부분도 보면서.
생각 하면서 문제를 풀고, 나중에 다시 생각하시고
그러시면 됩니다. 개념과 원리에 집착하다 문제 못푸는것은 절대 안되지만
문제풀이만을 하시면 안됩니다.
제생각에는 지금은 문제풀이 양을 늘리고
문제에서 개념에 대한 생각을 해주시면 될것같아요.
한문제 한문제 풀때마다 기계적으로 풀지말고 문제에서 요구하는 조건이나 개념의 의도를 알려고 노력하라는 뜻이죠?? 요즘 고민중인 부분이었는데 감사합니다..!
아닙니다! 열심히 하셔요..!!!