-
중대 전화추합 0
아 아무 생각없이 폰 보고 있었는데 갑자기 핸드폰 울려서 깜짝 놀라서 받았는데...
-
ㅇㅂㄱ 1
-
어느 쪽을 주전공으로 삼는게 유리한가요?
-
700이면 의대보다 등록금 높은 거 아닌가??
-
공대vs문과면 본인 성향따라 가는게 맞다고 생각함 뭐 레벨차이가 크게나는것도 아니고
-
건대 가는 사람들은 다 건대 복전 보고 가는거 아닌가요? 건대 전전 vs 외대 ld...
-
성대 4차 1
주말에 나올까요?
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
수학 뭐해야할까요 이제 진짜 기출 들어가야하나 시발점 틈틈이 복습하면서 기출 한번도...
-
그냥 ㅋㅋㅋㅋㅋㅋㅋ ㅋㅋㅋㅋㅋ
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
이젠 그런 짓 못해
-
ㅇㅂㄱ 0
-
기차지연된다 3
큰일났나?
-
보니까 eicc에서 영어통번역학과로 2025년도부터 학과명 변경 했다는데 이러면...
-
뜨듯한 2
용암 한 잔 하고 싶다
-
잘못된선택일까
-
킁 1
-
잘자 오르비
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
환상 갖지마삼
-
기차지나간당 5
부지런행
-
돈 벌기 힘들다
-
저 사실 금발임 3
근데 흑발로 염색햇음
-
너...너무해여....
-
특정한애가 박제해도 상관없어 이젠 나도 몰라
-
흠
-
무브링
-
서울대 수리과학부 연세대 전기전자공학부 고려대 사이버국방학과 한양대 미래자동차공...
-
이시간에 배달비까지 해서 13000원임 거기다 콜라 1.25l로 줌 동네 치킨집인데...
-
사랑과평화우정
-
어피니티
-
어제 일당 ㅇㅈ 3
외화 유출 ㅈㅅ
-
진짜로
-
좋은꿈꿔
-
특정한번 당하니까 바로 그냥 아이고아이고아이고아이고 아이고맨이 되어버리고 이제는 망해버렸어
-
꼬리 흔드는거 하아...
-
내가 이김뇨 ㅋ 2
미지
-
ㅠ
-
의예과 제외
-
다음 프사 4
루시다음 닉 ㅁㄹ.
-
그랬기 때문에 항상 공허한 느낌이 드는 것일까요,, 어디로 가야 할지도 모르겠어요,,
-
잘자요 6
내일은 좋은 하루가 되었으면
-
17개월구라아님
-
그건 몸에 괜찮지않나
-
연초에 전담에 종류별로 몇번 해봐도 다시피고싶단생각이안들음 좋은거긴한데 신기하달까
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요