-
ㅈㄱㄴ
-
술너무 3
많이 먹었어 으아 매화수 개전맛
-
국수하고 2
영어하고 과탐하고
-
방에서 전담 피다가 걸리면 가습기인 척 해야지
-
나 왜 21살이냐 13
뭐했다고? 진짜 구라까지마셈
-
톡방나갓더니 갑자기 커뮤 고닉한테 붙자마자 바로 나가시네요 ㅎㅎ 이렇게 쪽지옴 ㅋㅋㅋㅋ
-
메디컬은 추합 인증 올리는 순간 바로 옯밍아웃이네요 2
그날 단톡방 들어온 사람으로 바로 특정 가능할듯 ㅋㅋㅋㅋ
-
아가 귀가 중 1
건입에서 택시탐
-
사랑하는 그대의 생일날 은 아직 멀었다 작년 생일 때 재수학원 끝나고 속상해서 이거...
-
2025학년도 경찰대 영어 1차 시험 기출문제 18번 문장별 분석 0
2025학년도 경찰대 영어 1차 시험 기출문제 18번 해설 ( 선명하게 출력해서...
-
졸려라 2
자야징
-
촉촉하게 우유에 찍어서
-
어떤걸 배우는 학과인가요? 코딩 많이 하나요..? 취업은 보통 어디로 하는편인가요?
-
참 고마운 커뮤니티야
-
어떻게 선택해야할까요? 두 과의 차이점이 뭔가요? 어떤 과가 더 적성에 맞는지 모르겠어요…
-
롤할래? 1
ㅎ
-
오르비 잘 자! 8
좋은 꿈 꾸기
-
아까 그게 타격이 너무 컸다
-
야식 ㅇㅈ 4
지금 올리면 아무도 안보겠지? ㅜㅜ
-
행복하세요 3
행복하기
-
라면먹고 2
다시 자야지 배고파서 안 되겠다
-
막 울퉁불퉁 정도는 아닌데 가슴이랑 등 엉덩이 하체같은 대근육이 큼 빵이...
-
난 취지도 동의하고 단체 행동도 이해하는데 안 했을 때 불이익이 없을수가 없지 않나 싶음...
-
넵
-
잘자요 8
저는 이만 자러가볼께요 행복한 꿈을 꾸며 오늘은 그래도 괜찮았던거 같아요...
-
시간 버그인가
-
살아있는 사람 손
-
경기력 ㅈ망인데 상대가 더 못해서 이기니까 이겨도 기분이 썩 좋진 않네
-
요즘은 좀만 이쁘면 다 지들이 직접 연프 출연하고 유튜브 인스타 셀럽해서 돈 버는...
-
얼버기 0
다시잠
-
그냥 아무한테나 사랑받고 싶어서 남자라도 좋다 약간 그냥 이런 느낌인거임
-
ㅈ버러진 공격진과 미드진들 ㄷㄷ
-
오르비 안녕히주무세요 13
해뜨고 봐요
-
본인 책장 ㅇㅈ 9
ㅁㅌㅊ임?
-
동생을 밥 사줄수있는 어른 되고 싶다
-
미용실가도 고딩요금으로 계산받고 알바 동료도 고딩인줄 알았다하고 계속 고딩 공부에...
-
추천좀
-
좋은 어른이 되고 싶음 11
난 항상 좋은 어른이 되려고 노력하는데 그게 잘 되지 않음... 너무 연약하고,...
-
찐사랑이라 봐주었다
-
안자는분들 19
왜안잠
-
야식추천 9
ㄱㄱㄱ
-
고해성사 6
쓸 게 없네요...
-
사탐내신대비 0
제가 2학년땐 세계사 경제 윤사였을땐 경제는 개념 습득후 마더텅 수특 다풀고 나니...
-
게이 vs 레즈 3
둘다 좋음요
-
양성애자임 2
뻥임
-
질받 메타 참요 9
암거나 ㄱㄱ
-
아 잘까? 1
제목그대롬뇨
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요