2014학년도 6평 수학 A형, B형해설 파일 올려요~~
게시글 주소: https://orbi.kr/0003699197
2014학년도 6월 평가원 해설지(B)_해설완성본-hwp.pdf
2014학년도 6월 평가원 해설지(A)_해설완성본-hwp.pdf
에휴~~ 노가다 해서 이제 해설 파일 완성하였네요...손으로 푸는 것과 달리 워드 작업도 하고, 그래프도 그려 넣느라 힘들었네요..
하지만 여러 분들이 보기에는 한결 예쁘고, 깔끔할 겁니다.... 많이 많이 배포 해 주세요...~~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 자야지
-
자러갈지도 0
자러갈지도
-
오래된생각이야
-
시발 병신팀 2
개시발아오 ㅈ같은 새끼들 진짜 니들은 다 나가뒤져라 이 병신 ㅈ장애인구단아
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 6
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
-
답 470
-
ㅇㅋ ㅇㅋ, 그럼 오르비식으로 가볼게. 아 진짜 이거 말하면 좀 그렇긴 한데,...
-
저 조금 궁금해짐 오르비에 쓴 글들 gpt에 한번 돌려보면 뭐가 나올지도 -
-
자연수 하나를 저장하고 있는 기계가 있다고 하자. 이 기계에 저장되어 있는 숫자가...
-
이제 진짜 잔다 6
8시에 강기원 자받튀하러 가야됨
-
애니메이션 뭐에요..? ㄹㅈㄷ네
-
국수영 원점수 기준 전교 3등 국수영탐 원점수 기준 전교 2등 (추측)...
-
원래 수분감, 카나토미 이정도 하고 엔제 풀려고 했는데 교육청기출까지 하고...
-
메인글 뭐노 2
이제 봤네
-
레전드겠네 은케티아 유관 아스날 무관 ㅋㅋㅋㅋㅋㅋ
-
제 옆에 누워서 같이 자요 졸려..
-
시험장에선 좀 헷갈렸는데 지금 보니까 한눈에 보이네
-
아침 안 먹으면 훨씬 버티기 수월함 뭐 먹는 순간 긴장 다 풀리면서 급 졸림...
-
성대논술갔을때기억남 22
그때존나서러워서길거리걸으면서울고있었는데 그때길안내같은거하는성대생이왜우냐고하면서...
-
남자 유튜브에선 주접떨어도 별 말 안 하는데 왜 여자가 저런 글이나 영상 올렸을때...
-
9시 수업인데 9
지금까지 안자는 나는 머하는 머저리
-
쪽지기다려봅니다
-
독재 다니니 0
만날 시간이 없다 끄엥ㅠㅠ
-
출연 각인데 이젠진ㅉ인거 너무 티날듯
-
사실 이번에 개쉬워서 킬러도 아니였어서 2분컷내시면 goat 18 19번을 종치기...
-
어제와 3
오늘의 온도가 너무 달라서 비행운이 만들어졌네~
-
1, 2, 3교시 국수영 영역 시간: 250분 선택과목: 미적분과 영어 독해의 매체
-
본인 중딩 때 옆학교에서 소년원 가는 게 일상이었음 5
근데 팩트는 저런 넘들이 나보다 나은 인생이라는 거임 ㅅㅃ
-
격기 3반 고트...
-
장재원 서바 0
지금 장재원 대기40번인대 재원이 시즌1 안듣고 서바 들어도 ㄱㅊ아요? 미적3초임..
-
안녕하세요. 제 공뷰계획에서 수정할 부분 한 마디씩 말씀 해주시면 감사하겠습니다!...
-
왜 2
기여우신 분들이 다 탈릅하지 ㅠㅠ
-
유일한 자부심 5
고3도 고정1
-
슬전생 이거 짖짜 재밌긴하네 로맨스가 맘에 안들어서 다 찢어버리고 싶긴했지만 재밋어
-
올해 적백맞고 다들 성불하자
-
그냥 내 국수 백분위가 1등임 ㅋㅋ
-
본인 개좆반고특징 21
1. 교내 흡연의 생활화 2. 오토바이 등교의 생활화 3. 하교 후 음주 문화의...
-
양심고백 5
모 고대생 오르비언 특정한적 있음 보닌도 이미 특정당함
-
저기 혹시 0
이태린: 남자친구 있으세여?? 여자: 죄송해요 ㅜㅜㅜ (도망감) 감동실화다
-
학교 레전드 미친점 13
국수탐 백분위 99.90이었는데 백분위 전교 7등임 말이안돼
정말 감사합니다....
일등으로 다운받고 댓글 달앗네요...
열심히 공부할게요 ㅜㅜ 그리고 쪽지 보내드렷는데 수학관련 상담 ㅜㅜㅜ
답장좀 해주시면 감사하겟습니다....
일단 a형 해설지도 작업 해야 하고 6평 분석노트 a형 b 형이 나와야 해서 그거 먼저 할께요 그런다음에 상세히 답변 드리죠
고맙습니다!!
넵~~30문항 해설에만 그치지 마시고, 연계된 수능기출과 EBS를 모조리 공부하셔야 합니다~~~ 그리고 향후의 공부 일정까지 세워 보시고....
6평 평가자료는 분석노트에서 말씀드리겠습니다.~~
고맙습니다!
마찬가지로 30문항 해설에만 그치지 마시고, 연계된 수능기출과 EBS를 모조리 공부하셔야 합니다~~~
그리고 향후의 공부 일정까지 세워 보시고....
6평 평가자료는 분석노트에서 말씀드리겠습니다.~~
감사합니다 ^^ ~ 선생님의 킬러문항강의를 많이 연습해서 그런지 이번시험은 평소보다 좀 더 쉽게 느껴진것같아요.
분석노트도 기대하겠습니다!
감사합니다 분석노트는 월요일에 만날 수 있습니다
오늘에 Grand Final 나왔네요
폭풍 교재 작업 중...
잘 보겠습니다
넵~~~ 열공해서 좋을 결과 있으시길~~~
동훈쌤!!! 21번 해설지에 f(x) 미분하신거 하나 잘못된게 잇는 거 같아요!!
(x≥0) 일때 6x-a가 아니고 3x^2-a 인거같아요!!
다른건 너무 깔끔하셔요ㅎㅎ감사합니다!
A형 이죠? 에구 고마 우셔라~~~~
수정해서 다시 올렸습니다.. 감사~~
너무 익숙한 닉네임 이네요... ^- ^
죄송한데요ㅠㅠ수학A형18번 변BH+변HA=루트5k/2+2k/루트5 왜이렇게나온거에요??....
직각삼각형의 세 변의 길이가 2, 1, 루트5 이렇게 나오죠?
그런데 내접하는 직사각형의 가로 2k, 세로 k 라고 한다면 이 길이를 통해 다른 작은 직각삼각형의 다른 변의 길이도 알 수 있는겁니다.
ebs 수능특강과 완성 다 풀고 샘 ebs변형푸는것과 개념정리를 이 번 한달간 하는게 제일 좋을까요??
그 이전에 일단 이번 6평에 좋은 점수를 받았다 하더라도 이번 6평과 연계된 기출과 EBS를 샅샅이 찾아 분석 + 평가하는 시간을 조금 더 갖으세요.
제가 6평 분석노트에서 이런 점들을 부각시킬 것이며, 예전과 다른 경향성 들을 구체적으로 파고들어 학생들에게 전달하려고 합니다.
그리고 나서 향후의 공부 방향을 설정하도록 하세요... EBS변형도 도움 빠르게 돌리시길....
30번 문항 (n,m) 이 아니라 (m,n)을 구하는 문제예요!
그리고 (1,20)를 (1,2)로 잘못쓰신거 같아요~ 오타내신듯..ㅎㅎ
감사해요~ 잘봤습니다!
쵸고빅님 고마워요~~~ 지금 6평 분석노트 만드는데 , 미리 오타를 잡아 내니 다행이네요...ㄱ ㅅ
18번에서 왜 두 직사각형이 닮음인가요?
두 직사각형의 가로, 세로의 길이의 비가 1:2로서 동일하기 때문입니다.
A형 21번과 관련하여 질문 드립니다
극댓값의 정의는 함수의 개형이 증가에서 감소로 바뀔 때로 알고 있습니다.
a>0일 때 함수 f(x)는 x=0에서 미분은 안 되겠지만,
극댓값 0을 가지지 않나요?
따라서 극댓값이 5라는 문제의 조건에 위배되므로 a<0라는 것으로 문제를 풀어나가
야 할 것 같습니다만........
네 맞아요 극대값이 0 이라서 모순입니다
해설에는 a>0일때 함수 f(x)의 극댓값이 존재하지 않는다고 나와 있어서
수정이 필요하다고 생각해서 언급했습니다......
감사합니다. 6평 분석노트 만들때에는 반영했네요.. 고맙습니다~~~
코난샘 혹시 모평 당일날 올려주신 현장 풀이 그대로 있는 시험지 파일 다시 올려주실수 있나요...? 어제 저장을 안해놔서 오늘 다시 찾으려고 하니 없어서요... 혹시 그대로 있는데 제가 못찾고 있는 건가요...? ㅠㅠ
헉~~ 현장 풀이요? 워드 작업 하고 나서는 필요 없겠다 싶어서 버렸는데....
그리고 그 글도 해설지 Reload 시키고 나서 제가 지웠습니다...
혹시 무엇 때문에 그런 건지 물어 보면 제가 답변해 드릴께요....
선생님 A형 10번에서 연속인 걸 찾을 때 좌극한이랑 우극한이 같고 그 극한값이 함수값이랑 같아야 연속이잖아요 근데 해설에 함숫값이랑 우극한만 따져봤는데 어차피 좌극한이랑 함숫값이 같아서 생략한 건가요? 이전에 어떤 문제를 풀 때도 해설에는 함숫값이랑만 비교하더라고요 아직 개념 공부를 도함수의 활용 전까지 해서 모르는게 많습니다 어차피 다항함수니까 극한값이랑 함숫값이 같아서 그냥 그렇게 한건가요? 답변 부탁드리겠습니다
네, 좌극한과 함수값은 당연히 같이 때문에 좌극한을 굳이 쓸 필요가 없어서요..
님이 말씀하신 것처럼 다항함수이니까 극한값이랑 함숫값이 같아서 그렇게 한 거 맞아요~~~~
질문이 있어서 쪽지 보냈습니다. 답변 부탁 드려용
네 답변 드렸어요~~~