질문요!
게시글 주소: https://orbi.kr/000960328
책이나 강의를 들어보면?
두함수 f(x)와 g(x) 가
각각 x=a 에서 미분가능하면 f(x)g(x)
도 미분가능하다.. 라고 나오는데..
책을 찾아봤는데 내용이 없는거 같아서요
혹시 있는 내용이면 있는곳좀...
없다면 내용좀 알려주세요..
혹시.. 미분계수가 평균변화율의
극한값이라서 ...
그런건가...?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
중형 화려한 버섯만 패
-
건강이 안좋아지면 안되니까 ㄹㅇ일찍잘거임ㄹㅇ 다음에 바로 시작 이따가 밤에 오후...
-
오지훈 이신혁 0
누구 들을까요 6/9/수능 현역 4/3/2(94) 재수 3/2/2(94)
-
내일은 꼭 23시 취침해야지
-
가만히 있엇는데도 무릎에 엄청 멍들음 뭐야무서워요
-
컨텐츠관리자님 2
레어 환불제도 빨리 만들어주세용
-
기차지나간당 3
부지런행
-
레어화긴 2
크하하 근데 안보영..
-
와 핑크.. www.youtube.com/shorts/3zwuOxVQUwE
-
잇나요..
-
아 짜증난다.. 0
아까 이상한 레어 사져서 사고싶은거 못 사….
-
archive.today로가셔서 orbi.kr을검색한다음 페이지를넘겨...
-
나 잔다 ㅂㅂ
-
크아 6
크ㅜ
-
출근길에 방문열어봣다가 없어진거알면 뒤집어질거같아서 못가겟슨
-
야옹
-
남자들의 모순점 6
롤하는 여자를 찾지만 막상 롤창 여자 보면 신기해하거나 피함
-
알바 끝내고 새벽에 불교를 복습하며...
-
뭔가 근데 처음부터 여붕인걸 눈치까면 그냥 그렇구나 하겠늗데 14
남르비인줄알고 드립을 다 쳐놨는데 여르비라고 실토하면 배신감이 와..
-
투투하고 최대1~2틀까지도 안 되나요?
-
놀랍게도 실화임.. 오르비에서 책 사면 주는 스티커 붙이고 다님뇨
-
무조건 달고 다닐 수 잌ㅅ음
-
크악
-
내가하면 다들 나를 거르겠지
-
고향에 온거 같음
-
아 ㅈ같다 0
대리 이 ㅂㅅㅅㄲ는 갠새이 게속ㅊ쳐 넣노 일 ㅈㄴ 하기싫다 퇴근 언제하냐
-
와 핑크.. www.youtube.com/shorts/3zwuOxVQUwE
-
자러갑니다 2
다들 좋은새벽보내시고 꿈 잘꾸시길 전 어제 운전하다가 총맞는꿈꿨음
-
이거 재밋네 다른 것도 해봐야지
-
F식 화법 6
무슨일 있어? 밥먹으러 갈까? 이거 아님?
-
자러간다 3
-
배고파 0
뭐 먹지
-
과외 날먹도 못 하겠고 컨텐츠 팀 일도 적당히 못 하겠어서 계속 수정하고...
-
확통런할까요 0
예비고3인데 작수 공통 20,21틀 미적 28 29 30틀입니다 이유도 말해주세용
-
으하하
-
금수저 부러워
-
현실이랑 넷?상 0
나는 여기서 교양인인척하고 현실에서는 노미현코스프레하고다님...
-
차이점은 넷상은 산화당한팀06오르비언을 둘째달에 보니까 3
그담부터 순화한 5번은 하고 돌려서 하는듯
-
전 ‘그건 나라도 ~하겠다.’ 이정도가 최대인데
-
이차곡선 슥삭해야지
-
현실이 없고 넷인생 넷친구만 있는데 어떡하나요?
-
극 내향인이라 롤보도 안킴
-
인터넷이 현실이고 현실이 인터넷이야
-
얼버기 7
배아파서 깬듯
-
무지막지한거 가튼데
-
하..
-
개억까미친
-
넷상에서는 그냥 드립도 생각나는대로 치고 눈치 안보는데 현실에선 일단 내향인인데다가...
-
뭐지…? 15
덕코 빠져나갔길래 뭔가 했는데 저 레어 머임..? 산적 없는데..? 아 뭐야 저거..
-
오..
그거 f(x)와 g(x)가 서로미분 가능하니까
둘다 연속함수라고 할 수가 있죠.
둘다 연속함수니까 연속함수끼리 곱하면 연속함수가 나온다는
조건하에서 f(x)g(x) 는 연속함수가 되죠.
그리고 그래프 아무거나 정해서 그려보면 f(a)g(a)도 f(x)g(x)가 미분가능하도록 하는
위치에 놓이게 될거에요. 한번 해보세요.
{f(x+h)g(x+h)-f(x)g(x)}/h={f(x+h)g(x+h)-f(x+h)g(x)+f(x+h)g(x)-f(x)g(x)}/h
={f(x+h)g(x+h)-f(x+h)g(x)}/h + {f(x+h)g(x)-f(x)g(x)}/h
=f(x+h)[{g(x+h)-g(x)}/h]+g(x)[{f(x+h)-f(x)}/h]
양변에 h->0의 극한을 취하면,
{f(x)g(x)}' = f(x)g'(x)+f'(x)g(x)로 문제없이 f(x)g(x)의 미분계수가 잘 정의됩니다.
뻘댓글이지만 이걸 치시는데 박수를..
미분가능하다의 정의는 미분계수가 존재한다입니다. Schrodinge 님이 말씀하신것처럼 묶어서 미분계수의 존재여부를 판단하는 것이지 연속성을 따져서 구하는건아닙니다