풀만한 수열의 극한 문제 하나 드립니다~
게시글 주소: https://orbi.kr/0008629473
답.txt
제가 만든거 아닙니다..그래서 퀄리티도 그렇게 나쁘지 않을겁니다..
원문링크는 아래와 같습니다.
https://www.artofproblemsolving.com/community/u296133h1220663p6119372
링크 댓글에 제가 허접한 영어실력으로 풀이를 달긴 했는데 저의 작문 실력을 보이고 싶지 않으니 그냥 무시하시면 됩니다..답은 첨부파일에!
(링크가 뭐 엄청 대단한 문제처럼 돼있는데 실상은 그렇진 않은 것 같습니다..)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
합성함수 종나 나오네 ㄹㅇ 합성함수의 최대 최소 판단 합성함수의 극값 판단...
-
잠이 안온다.. 2
아
-
닉넴 바꿀까 0
??
-
망플단 0
흠
-
[칼럼]1부 - 비타민K 문제해설 (독서는 결국 ‘정보량 싸움') 0
[소개 및 성적인증] https://orbi.kr/00071877183 [칼럼]1부...
-
얼버기 6
-
ㅇㅇ
-
팔로우버튼에 1
박스가생겼네 위에 내비게이션 바? 도 투명해졌고
-
조까고 밤새는 나
-
크옹
-
살려줘요
-
유나랑 로제같은
-
탈퇴 눌러도 안되네.. 컴터로 해야함요?
-
프리미엄 은테 아다를 가져갈 기회임
-
덕코 털고감 4
선착1
-
5번 빠니까 끝남
-
본 사람?
-
응 너 죽고 나 죽자
-
그냥 독서실 비번아는데 문따고 들어간다 ㅋㅋ
-
지구온라인 종료가 진짜 다가오나
-
머리가 어지러 ㅜㅜ 17
여붕이 아파...
-
돈에 집착하고 일을 하려고 하는 듯 내가 하고 싶은 거를 맘껏 하기에는 돈이 부족함
-
슬프네 열심히 살아봐야지...
-
누가 광역도발 시전해놨네 ㅅㅂ
-
난왜 무물보안해줌 25
ㅠㅠ
-
요새 듣는 랩 6
수퍼비 엠뷸런스 애쉬아일랜드 멜로디, 뭐시기 히어로, 뷰티풀 창모 마에스트로 아이야...
-
왜 위쪽이 투명해졌지
-
요새 자주 듣는데 없음
-
무물보...? 10
몰라 일단 게시물은 써보자
-
창모 이새낀 요새 뭐함
-
배아픈데 7
토할것도같고 ㅈ같네
-
아무리 봐도 an+2인 거 같은데
-
한판도안함
-
.
-
비틱 하나만 할게 15
저번에 논술 재능테스트 강사제외하고 일반인 중에서 유일하게 10점 맞은 놈 나임....
-
교훈 3
잘생긴게 최고다
-
구란줄 알았다 왜 진짜냐?
-
각자만의 이유가잇는것임 20
내가 쟤 사준이유가 잇겟지 그리고 우린 걍 친구임 오프라인에서 만나본적도없고 다...
-
난 뭔가 재수 용기가 안남 주변에 반수하는 사람도 많은데 난 현역 때처럼 살 자신이...
-
좋은 밤 되시구 내일까지 은테 만들죠? 은테에 맞춘 한결 프사나 골라둬야지
-
ㅈㄴ 어색하네 여당이건 야당이건
-
근데그거말하면바로특정돼서말못함.... 말하고싶다
-
내신 2점 초반, 수능 32442 현역 교과로 숙대 왔습니다 추합으로 겨우 붙기도...
-
맞팔구함. 7
은테만 좀 달아보자
-
목표 9
경찰대 가서 설대or동국대 학점교류 가기 실리와 대학라이프를 모두 챙기는 최고의 계획
-
그냥 모르겠다 1
너무힘들다사는게 안겨서울고싶다
-
ハルジオン 2
제가좋아하는노래
-
깎일 것 같은 2번이 만점이고 적분 우당탕 1번을 깎이네 에???
코시수열은 교육과정 아득히 바깥..ㅠ
이 수열은 굳이 따지자면 코시수열이긴 하지만, 왜 그 말씀을 하시는건지요?..
엡델 안쓰고 교과과정 내에서 어떻게 답을 구할 수 있을지 잘 모르겠네요. 풀이 보여주실 수 있으신가요?.?
그냥 대입해서 계산하다보면 x4, x5의 절대값이 1/4보다 작습니다. f(x)=x^2+x/2라고 할 때, x2n, x(2n+1)의 절대값이 a보다 작고 a가 1/2보다 작으면 x(2n+2), x(2n+3)의 절대값이 f(a)보다 작음을 절대부등식을 통해 할 수 있습니다. n이 1씩 커질수록 절대값 제한에 f가 덧붙여지고, 이때 링크의 제 풀이에서는 f가 덧붙여지는것을수열로 표현했는데, 여기에 f가 붙을수록 0에 수렴함을(말로 표현하려니 이렇게 밖에 안되네요..) 증명할 수 있습니다.(이는 등비수열에서 공비가 1보다 작으면 0으로 수렴함, 샌드위치 정리에 의해 증명되지요.) 절대값 제한이 0에 수렴하니까 결국 샌드위치 정리에 의해 xn자체도 0에 수렴하게 되지요. 링크의 풀이에는 제가 엡델을 썻는데 그냥 제가 입델을 좋아해서 쓴 것이고, 굳이 쓸 필요는 없다고 생각합니다만...
샌드위치가 먹힐 줄 몰랐네요. 감사합니다