-
아 잘까? 1
제목그대롬뇨
-
3학년때 확통을 최소 2는 받아야만 하는 학생입니다 현재 시발점 했고 낼부터...
-
현강가면 집중도 잘되고 잘 가르쳐주시니까 좋긴한데 현강의 메리트가 뭔지...
-
오르비 안녕 3
나 집 간다 ㅂㅂ
-
선넘도 괜찮아요
-
프로11 사시나요 프로13 사시나요 에어11 사시나여 에어 13 사시나요??
-
맨날 술마시는데 0
진짜 ㄹㅇ중증 알콜중독인듯 나
-
거리 상으로는 홍대가 40분정도 더 가깝습니다 집안 분위기 상 자취나 기숙사는...
-
이왜진???
-
주인 잃은 레어 5개의 경매가 곧 시작됩니다. 디맥 리스펙트 V"네오위즈에서 개발한...
-
웃긴게 얘 게이인걸 여자친구한테 들킴 ㅋㅋㅋㅋ 그냥 양성애자 아닌가 싶은데 그냥...
-
개뻘글에 어그로 너무 많이끌려서 위험느끼고 튑니다 안녕히 주무십쇼 10
하 이미지 어카냐 진짜
-
오야스미 2트 1
네루!
-
새벽에 심심해서 갑자기 합격증 올리기 .. ㅎㅎ 목표가 중경외시+이화..였어서...
-
심연이니까 취향선택좀 13
후타나리 vs 쉬메일
-
아빠안잔다. 10
나 ㄹㅇ 왜안잠? 시간 늦어지면서 아이큐 실시간으로 떨어지는중
-
도플러효과에서 헤맨 난 저능아
-
ㄹㅇ 황근출해병님과 전우애 실시하나요?
-
수능볼까요 13
말까요
-
주위에 레즈는 꽤 있음 15
게이는 못 봄
-
원래 계획은 미적 단과수업 + 스스로 수분감 풀면서 병행 이었는데 이번에 시대인재...
-
사랑해요
-
LGBTQ+ 3
-
먼가 무능한 남자 1같음
-
일어난김에 2
아예 일어날까 배고프고 잠이 안와
-
그냥 눈팅만좀 해보고싶은데
-
반수할까 2
미치겠다 진짜
-
숭실대가 떴노ㅋㅋㅋㅋ 아...인생..
-
난 게이 존중해 5
님들도 그렇지?ㅎㅎ
-
얼굴 오르비언처럼 생긴분 나올줄 알았는데 생각보다 예쁘셔서 놀랬던
-
서울 가고 싶다 4
클럽 가고 싶어
-
훌륭한 사업가가 되는법??
-
고려대 너무 조아
-
하아아아악 고양이가 이김
-
카톡 어차피 안와서 넣어논거임 ㅋㅋㅋㅋㅋ
-
집에서 과제할때만 필요한거임? 아님 매일 챙겨야되나?... 노트북 들고 두시간 통학...
-
라이브는 강의비는 저렴하던데 교재나 컨텐츠 이런거 다하면 보통 얼마나오나여 개학하면...
-
문과로 0
바꿀건데 확통노베면 미적은 그대로하는게 나을까요 미적을 잘하진않지만 확통은 아예노베라
-
현실에선 국숭세 부경인아곽 이 라인이 몇프로인가요? 4
한 15프로 하려나
-
좀 과한가 삼성 정품 65W 트리오 충전기임
-
이정도면 아싸히키맞냐?
-
흐흐흐ㅡㅎ
-
나도 자야겠네 13
-
기대된다
-
잠이 안 옴 9
진짜 어캄
-
아 자다가 깸 17
ㅈㄱㄴ
-
못버티겠다 15
자야지...
-
정혼 당함 3
2학년 1등해서 받은 교육감상 상장 엄마가 카톡 배사 했는데 우리동네 사는 어떤...
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요