[박수칠] 미분계수와 함수 극한의 관계에 대하여
게시글 주소: https://orbi.kr/0007810298
![](https://s3.orbi.kr/data/file/cheditor4/1601/NySttD1Stc5ZM91OYG.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/QeGVxng4ghnQPJuhban.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/Yedk4r1qsQIkDqmViQRpkgTRL.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/YqaFQOpY3AlM6RSOMHO24uyY.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/sekEaEYqNkXwNvC22SShWrPBM8XWriQh.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/RWiNaHQSvVXGEXD3q72rRxCc.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/2PiVzmQrRmFkqlWkMdPV66kyXzQHOX7.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/LxUSKxEdxQkV7eDZCslKbpedT2tB.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/CUPnTvEQ3jUPt9Z7VQtOnwZWZNXCXf6X.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/EzF7MAWIHAl6XvN.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/LHwZ6M3JDbBqCDw1LwNg7tT1vzi.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/962nkNOoavdC2xv8.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/VsCqtfCLadWSfMSmkWJZHW.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/VsCqtfCLadWSfMSmkWJZHW.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/E9Svpwt5z7xHskfuFOmjOkj6o.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/jnN5zXGcndQHME7f.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/49UNcyZLf5v5Ixu5bnNf9sFI1qZm.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/zY8alLcS6kj862NWy6EdHyo.jpg)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜 벌써 자러가는거야??ㅠㅠㅠ
-
물론 분야마다 다름 근데 머리좀 쓴다하는 분야 가보셈 다 윗쪽에 고학벌이 득시글...
-
반 병만 마셔도 눈 깔이 풀림
-
bts - house of cards 얏네
-
제가 이런 주제의 글을 쓰는 건 두달만이네요 항상 사랑합니다. 앞으로도 정신하는...
-
ㅋㅋㅋㅋㅋㅋㅋㅋ
-
근데 왜 1
이과는 언매 하는데, 문과는 미적 기하 안 배울 이유 있나? 그냥 문과도 과탐...
-
히히 똥투척
-
시청자좀 차면 보여준대 https://m.site.naver.com/1zZVs
-
성대 공학계열 0
합격하신분들 국수영과탐2개 몇등급 뜨셨나요..??
-
쌍도촌놈(ㄹㅇ농어촌임) 드디어 서울사람으로 변신하는건가
-
왤케잘마시냐고 특정은.. ㅆㅂ 모르겠다
-
똥이나 부룩부룩 싼다
-
문과 나군 중앙대 예비1번 추합기다리고있는데 제 위에 합격한분이 중경 889번을...
-
오야스미 0
네루!
-
이제 가야지 3
흐흐
-
제 이미지를 써주세요 21
사랑합니다.
-
옛날 디시 코갤에 곤솔리니 오리더 형님이 그립다... 0
코프리카 시절 bj방털고 ㅅㅂ 그때 걍 순수하게 초딩이면 초딩답게...
-
세지
-
지금 깨어있는 사람?
-
새로운 날이 밝아오고 있어요 또 하루 행복이 가득하길 빌게요
-
축하의 박수를 보냅시다
-
너무 배고프다 3
2시간만 참자
-
고려 때 최초의 사심관은 누구일까?
-
일어나라 2
-
1컷 37인 23년도 5모 도전 가장 근접한 점수 5천덕
-
댓쓰면 이미지 대신 42
여러분과 어울리는 로맨스판타지 웹툰 추천해드릴게요
-
피파 킨다 6
내 옆에는 고래밥과 물
-
왈왈왈 왈 12
왈
-
고구려 멸망 후 고구려 부흥운동 때 왕으로 추대되었던 사람은?
-
캬 ㅏㅏㅏㅏ 1
https://youtu.be/Yiseee5xkFU?si=GnRwjpQdU0E84ks...
-
부분융용융용융융 5
부분용융용용용융융용 바로 윗글의 용 갯수 맞추면 천덕
-
ㅎㅇ 1
-
허어
-
맛있는 걸 잘아시는 군요.
-
진짜 보법이 다르네
-
일제가 민립대학설립운동을 방해하기 위해 세운 학교는?
-
내일은 더 마셔야하는데 레전드상황발생
-
힝
-
그래프 분리 0
한석원 선생님께서 고1 수학에서 이차함수 f(x)-g(x)=0을 f(x)=g(x)로...
-
스마티한 작문 능력 가지고싶다
-
이문제 암산(임신아님)컷함
-
진짜로
-
ㅇㅇ 저는 일단 오리지날이긴 하거든여
-
만점자도 카관의 갔다고 그러네
-
심심한 노프사 1
달리기선수 노프사사랑과평화우정 잠만보어피니티 마시로셀레스티얼 시키모리
-
내가 생각한 답은 뱃걸굿걸 미쓰에이였음 자 상식퀴즈 케이팝편 2탄 아이브 초반 앨범...
-
친구만나느라 잠깐 그사이에 온 전화 못받았는데 사라짐 ;; 아 이딴거 진짜 싫은데 ㅈㄴ 어린티나는거
-
찐막) 장소퀴즈 25
너무많이하면뇌절같음 나라+도시
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^