곧 공부시작 하실 분들을 위한 수학기출분석법
게시글 주소: https://orbi.kr/0007648194
예전에 올린글입니다
시기적으로 맞지도 않았고..또 지금 시점에 도움 되실 것 같아서 다시 올립니다
저에 대해 안좋은 감정 가지신거 당연하다고 생각합니다. 이전 제 행실에 대해서도 많이 반성하고 있습니다.
앞으로 좋은글로 찾아뵙도록 노력하겠습니다
그럼 시작하겠습니다
나중에 과외할때 써먹을 내용이기도 하고 개인적으로 느꼇던 것들을 정리하는 용도로
이 글을 쓰게 되었습니다.
한편에서는 니가 무슨 실력이 그렇게 뛰어난데? 무슨 조언질이냐라고 말씀하시는 분들이 많으실거같은데.. 저는 예전에도 밝힌 바가 있듯이 진짜 고1때 바닥에서부터 시작하였습니다. 입학하고 3월모의고사때 백분위 60인가 맞앗었고 여튼 보통 일반 수험생들의 입장을 누구보다도 잘 안다고 생각하기때문에 실력은 모자라지만 이런글을 올리게 되었습니다.
1.수험생이 행해야할 행동양식은 정해져있다.
수열이 대표적입니다. 한석원 선생님도 말씀하셨지만 이 부분이 가장심한데요
평가원이 말하고자하는 바를 강하게 캐치를 하시는 연습을 기출을 통해서 연습하는데 그 의의가 있습니다.
예를 들겠습니다. 수열문제를 풀면서.. 예를들어..하면서 나열하는 경우가 있습니다. 이 경우에는 문제에서 나열해봄으로서 규칙성을 찾아봐라 라는것을 함축적으로 의미하고 있습니다.
반면에 일반항을 구할수있게끔 n번째 항에 대한 정보를 주는 경우가 있습니다. 이경우에는 일반항을 직접구하라는 의도로 읽습니다.
또한 n번쨰항과 n+1번째 항의 관계를 줌으로서 점화식으로서 문제를 해결하라는 의미를 가진 문제들도 존재합니다.
기출문제를 문제로서만 보지 마시고 서술 방식에서의 차이를 느끼셨으면 좋겠습니다. 생각보다 평가원은 친절한 편입니다. 풀이의 방향성이 어느정도는 필연적으로 나아가게끔 발문을 처리하는 편이고 만약 수험생이 그에 반하는 방향으로 갈시 엄청난 계산이 기다리고 있거나 답이 도출이 안되게끔 되는것이 일반적입니다.
즉 기출분석이라는것은 내용적 측면이 아니라 행동영역 측면으로서의 역량을 연습하는데 좋은 소스로서의 역할을 할 수 있는 것입니다. 왜 이때에는 나열해서 규칙성을 판단하고 왜 이 상황에서는 상황을 축소해서 일반적으로 생각해본뒤 원래의 상황에서 생각해본다던지..
문제를 군집화 시켜서 생각해보면 행동영역적 측면에서 기출문제는 이용될 수 있습니다.
2.묻고자 하는 지점들이 굉장히 동일합니다.
예를 들어보죠. 기출문제에서 절댓값,무한등비수열,가우스 같은 문제는 시도때도 없이 우리에게 분할해서 문제상황을 따질것을 요구하고 있습니다. 이게 굉장히 반복되는 요소이고 거의 반 자동적으로 이 3가지가 나오면 분할하고 시작한다. 이게 습관적으로 되면 굉장히 실질적으로 도움이 많이 되었습니다.
저같은 경우는 이 작업을 전개년 평가원문제를 가지고 했습니다.
나름의 필연성을 노트에다가 적어가면서 문제를 풀어가는것이지요.그러다보면 약간 비슷한 문제도 보이고 반드시 이래야만 하는 지점들이 눈에 들어옵니다.
예를 들어 이차곡선 같은 문제에서 초점에 연결되어있는 직선을 이용한 무제인경우 항상 정의에 입각해 보면서 생각하기. 이런것들을 노트에 적어가면서 학습을 하였습니다.
그리고 이짓을 계속 하다보면 조건에서 함수값의 범위를 준것조차 함수의 개형을 1개로서 결정짓는데 기여한다는 사실을 알게되고 모든 조건들이 문제풀이에 핵심적인 역할을 하게 됨을 알 수 있습니다.
제 추천은 몇개년이어도 좋습니다.(지금은 시간이 많으므로 전개년을 추천드립니다.)
기출문제를 펴고 최대한 자기가 다름사람에게 설명할수있을 정도로 기출분석을 합니다.
기출분석을 함이라 함은 필연적인 이유를 써가면서 해가는것입니다. 머리가 비상한 사람이나 이러한 경험이 많은 수험생들은 문제를 보고 바로 직관적으로 와닿고 풀이에 들어가는 작업이 진행되지만 그렇지 않은 수험생들의 같은 경우에는 필연적인 이유를 자신이 납득할 정도로 받아들이는게 중요합니다.
가령 치환적분과 부분적분중에 어떤것을 사용해야할지.. 묻는문제들 같은 경우에
왜 내가 치환적분을 했는지.. 아 여기에 치환된것이 존재하기때문에 치환적분을 사용하였다.
부분적분을 할 경우에는 이것은 미분이 쉽고 적분이 조건에서 주어져있기때문에 이렇게 판단하였다. 또는 문제에서 구하라는 꼴을 보니 미분해서 나와야하는경우네 아 적분해서 나와야 하는 꼴이네 등을 통해서 학습할 수 있는것이 굉장히 많습니다.
물론 나중에 가면 이게 사고의 틀을 제약시키기 때문에 악영향을 끼치기도합니다.
분할을 안해도 되는데 궃이 분할을 해서 상황을 복잡하게 만든다던지요.. 이거는 나중에 실력이 쌓이면 센스로서 처리할수 있는 지점이므로 패스하도록 하겠습니다.
3.교과서 학습으로서의 시너지효과
미분문제를 푸시다보면 약간 직관이 많이 먹히게 출제를 합니다.
제작년 30번 변곡접선으로 가능했구요.. 물론 변곡접선에 대한 이론을 학습을 했으면 가능은 하겠죠..
2012년에도 나왓고 여러번 나오니까 이러한 직관이 어쩌면 당연한것처럼 느껴질 가능성이 매우 농후합니다.
하지만 제가 드리고 싶은 말씀은 교과서에서 그런것을 배운적이 없다.이것입니다.
상당히 많은 수의 학생들이 교과서를 무시합니다.(아닌분들도 많겠지만요)
제가 본 많은 학생들은 그랬고.. 저또한 그랫었고 제친구들도 그랬었습니다.
교과서를 보시면 굉장히 논리가 체계적으로 서술되어있습니다.
포카칩님이 강조하시는 지수의 확장을 예로 들겠습니다.
우리는 중학교때 지수가 양수인 것의 지수법칙을 학습하였습니다.
고등학교에 들어와서 a^0이라는것을 정의하고 이를 1로서 정의합니다.
이것을 정의함으로서 지수가 음수까지도 확장시키게 됩니다.
그리고나서 거듭제곱을 정의하고 이로서 지수가 유리수일때까지 정의하게 됩니다.
실스는 그냥 고교과정에서는 받아들이기로 합니다.
즉 교과서에는 체계가 있습니다.
기회가 되신다면 이 흐름을 한번 쭉 한번 느껴보시길 간곡하게 추천합니다.
올해 9월30번같은경우 말들이 많았지만..
교과서에 증가를 이렇게 정의하고 있습니다.
x1 미분계수와의 연계성은 생략하도록 하겠습니다.
9월30번 ㄴ번 조건를 보면은 완전히 정의로서 질문을 던지고 있습니다.
나 증가함수야!!!
즉 제대로 학습이 된 학생이라면 바로 이것을 증가라는 것을 캐치하고
교과서에서 증가와 미분과의 연관성을 설명합니다.
이로서 아.. 이렇게 푸는것이구나 라는것을 문제를 풀면서 느낄수 있습니다.
그리고 시험현장에서 확신을 들게끔하는것이
아 이것은 교과서에서 배웟고 이것은 배우지 않았으므로 출제대상에서 배제되는군이라는 자신만의 기준을 설정할 수 있는 기준의 역할이 될 수 있는것이 바로 교과서이고요.
사실 문제를 내는것이 교과서의 학습목표에 거의 부합하는것들로 출제를 하는 측면에서도 도움이 되구요..
결론짓자면 이러한 방식으로
기출문제를 보시면 확실히 실력향상에 무조건적으로 기여할것으로 확신합니다.
기출문제를 보는 이유는 풀이의 과정을 기억하기 위해서는 아닐겁니다.
분면 뭐.. 일부측면은 맞는것도 있겠습니다만.
포카칩님의 말쓰을 좀 인용하자면
문제1은 A-B-C-D-E-F 가 풀이순서라고 하면 많은 사람들은 보통 D-E-F정도를 기억하고
다시 기출문제를 분석할때 D-E-F-만 보고 아 쉽네.. 난 다했어라고 착각하는 경우가 부지기수입니다.
가령 11학년도 미분문제를 풀떄 캬 .. 엉덩이를 그리자 옳지옳지 그래 아 쉽네.. 왜이게 1컷이 70점대람..하는 사람들이 많습니다.
최대한 문제를 처음봤다고 생각하시고 문제를 바라보십시요
맨 처음 그 문제를 보고 쩔쩔매면서 풀이가 안보였을떄의 그 상태로요.
내가 어떻게 A에서 B를 유추해냇고 B에서 C를 생각해냈고 이래서 내가 답을 도출할 수 있었다라는 연결고리들을 자신들이 정리해 나가는 과정을 저는 기출분석이라고 생각합니다.
절대로 문제는 똑같이 나오지 않을것입니다.
다른문제는 G-F-D-E-K 이런식으로 문제 풀이가 진행될것입니다.
문제를 푸는게 능사가 아닙니다. 그 문제풀이속의 연결고리를 계속적으로 의식적으로 파악하려고 노력하십시요.
이 방식으로 한다면 저도 그랬고
반드시 괄목할만한 성장이 있을것이라 필히 의심치 않습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
?? 0
서카포연고( 서울대 카이스트 포항공대 연세대 고려대) 서성한디쥐유(서강대 성균관대...
-
요즘 춥냐 왜케 0
하아
-
4명 모집했음
-
시험 보다 극심한 타임어택으로 홍콩가버릴듯
-
다들 공부에 관심이 없으시네 쯧쯧
-
님들 1
애니 재밌음? 추천좀 해주셈
-
저격도 먹고 ㅜㅜ 게임도 못해 공부도 못해
-
미안해 2
혼자서 소주 2병, 맥주1병이면 살짝 제정신은 아닌거 ㅇㅈ?
-
ㅇㅇ
-
약대6학년입니다 아무거나 물어보세요
-
d== -3/7 ==-9 (mod20)
-
설의 수석이어도 3
나같은 뻘글러더라
-
설의수석은지리네 5
-
22학년도부터 있었던 평가원 모고중에서 미적분 파트만 본다면 작수는 얘네중에 어느정도 난이도인가요?
-
심심한아 미안해 2
넌 나의 좋은 커뮤친구야 사랑해!!
-
멘사 회원 1
멘사 회원 누구나 할수있는거임?
-
literal 사전에서 읽으니 리터럴 리더럴 리러럴 이렇게 들리는데 리터,리더,리러...
-
물리하는게 맞는건가 충청도 지역인재 버릴 수 없는데
-
일클래스에커피쏟아서사망한김에 평소 들어보고싶은 브크를 들었는데요 작년브크 3세대...
-
걱정이네
-
내일 일본 가는데 12
짐이랑 계획 제대로 준비 안 하고 오르비나 하고 있네 에휴 그만하라고 말 좀...
-
저격합니다 7
심심한 님은 남의 게시글에 시비 그만털고 공부나 하세요!!
-
진짜 보면 볼수록 내스타일의 과목이네,,, 하,,, 생물이 백분위에서 유리하다길래...
-
한의대 노트북 0
한의대 예과때 아이패드로만 생활 가능한가요? 데탑은 있습니다
-
공부법 2
걍 n제 벅벅풀기 하루에 수학실모 2개씩 치기 쉬는시간에 몰래 카페가서 케이크먹기...
-
남자가 많긴하네요 당연한건데 사진으로 보니 또 느낌이 색다름 약간 남고에 여선생님...
-
휴 아직 나는 구원받을수있어!!
-
하
-
엔제는 다들 비슷한가요???
-
유툽에 공부법 영상들보면 생각보다 별거아닌게 은근있는듯 1
아침에 일찍일어나는 법이라길래 ㅈㄴ 기대하면서 봤는데, "이 인류에 필요한 존재가...
-
사실 걸어놓기용보다는 부모님이 반수 사실을 모르셔서 학교 등록한거라 최소학점...
-
설의 수석?? 1
나같은 지능으론 매일 12시간 공부해서 죽을때까지 수능봐도 근처도 못가겠노
-
Hospitalize 하스피털라이즈인지 하스피럴라이즈인지 헷갈리네 둘다 되는거임?
-
정상화 근데 복부가 진짜 안 빠지네 으악악
-
VS 대결 21
과연
-
딥시크와 북학의 - 중국을 비웃으며 중국에 위안받는 모순에 대해서 1
아마 똑똑한 여러분들은 제목만 보아도 제가 무슨 말을 하고 싶은지 아실 수 있을...
-
와 핑크.. www.youtube.com/shorts/3zwuOxVQUwE
-
나같은 저능아를 노예취급하면서 함부로 써주면 좋겠다♡♡
-
ㅈㄱㄴ
-
대해린 3병상태 1
집가냐
-
ㅠㅠㅠㅠ 환불도 못받고 외국이라 신고도 못함 ㅠㅠ
-
두근두근오티전날 0
-
에휴 옯평 13
심각하다 심각해 어휴 진심으로 너네들이 창피해진다..
-
공부만 하다가 1
안녕하세요 현역이고... 여고재학중이에요 공부만 하다가 결국에 제 정신건강을 미쳐...
-
도파민폭발
-
오늘도 선착 맞팔 10명은 500덕
-
서울간다 3
언제인지는 비밀
이거 예전에 우연히 포만한에서 봤는뎅ㅋㅋㅋ
참고할게양!
진심으로 도움 많이 되셨으면 좋겠습니다
감사합니당ㅎㅎ
나중에 과외학생 모집하시면 오르비에 올려주세양
넵 알겠습니다
교과서 출판사 추천해주세요~!
예전에는 성지가 좋았어요
올해 개정된 이유가 성지출판사가 소송걸었는데 승소해서 기존 교과서들이 성지서술방식으로 따라가게되어서 거의 비슷비슷해요
넵 감사합니다~ 힘내요!
아마 수학이 개정되셔서 걱정이 많으신분들이 있는데 사실 이전 교육과정을 학습하신 분들은 크게 달라진게 없어요 사실상
개정 이전 교과서로 공부해도 상관없을까요~?
아뇨 절대 안됩니다
기출은 어떤 문제집이든 상관없고 교과서는 새로 사야하는 부분인가요?!
기출도 사실 좀 말하기가 애매해요 지금은..
생각보다 좀 빠진게 많아사ㅏ 기존문제가 교과외인부분도 많아져서요
예전같으면 전개년이지만..
지금은 확실하게 추천드리기가 살짝 조심스럽네요
넵 감사합니다^^
과목별로 나눠져있는 문제집이 좋으려나요?
년도순으로 과목별로 분류해놓은게 기출문제분석하기는 가장 좋다고 생각합니다
1번 굉장히 공감합니다 기출분석을 하는건 평가원의 표현을 익히기 위하는게 제일 크다고 생각해요 lim An을 구하라 하면 n+1항과 n항의 점화식을 구하는게 편리하고 lim An/n을 구하라 한다면 An의 일반항을 구해서 푸는게 편리한거가 또다른 예시가 될듯.. 맨첨에 12월엔가 이글 작성하셨을때 나중에 봐야지 하고 북마크 해뒀는데 삭제되서 못봤었는데 이번에 보게되네요
사실 이 부분이 가장 중요한데 놓치기 쉽죠. 좋은 평가 감사합니다
과외 하려면 개정수학에서 새로 개념 공부해아할 부분이 있을까요?
넵 분할분배요
교육청꺼는 분석 따로 안하고 한번 풀어만 봐도 될까요?
넵 평가원도 많아요
도움되는 말씀감사합니다
넵!
많이 알아갑니다~ 앞으로도 좋은 글 써주세요
넵!감사합니다
감사합니다ㅜㅜ지금 한석원쌤 알텍을 수강 중인데요 이제 한 절반 정도..? 되가는 거 같아요 그런데 제가 쌤의 사고방식과 풀이들을 체화해야하는데 너무 늦는 게 아닌가 불안해요ㅜㅠ 시간이 모자라지 않을까요?
늦을수록 천천히하세요
조급하면 더 늦어져요
전개년 수학문제집은 어디서 구할 수 있나요??
일단 자기의 풀이 접근법과 풀이과정을 정리하고 교과서에서 쓰인 개념 필연적인 풀이간의 연결고리정도를 찾으면 될련지요... 그리고 혹시 3점중상정도의 문제부터하셨나요 아니면 그냥 전체 다하셨나요???