좋아! ?
이번 34번 문제 지문을 전체 보여주고, 정답 근거가 되는 부분을 볼드체로 표시하고, 바로 옆에 괄호로 설명을 달아줄게.
? 34번 지문 (정답: ①)
When gathering the preferences of multiple agents into one collective choice, it is easily seen that certain cases call for randomization or other means of tiebreaking (→ 특정 경우에는 무작위 추첨이나 다른 동점 해결 방법이 필요함. 빈칸 정답 의미 그대로).
For example, if there are two alternatives, a and b, and two agents such that one prefers a and the other one b, there is no deterministic way of selecting a single alternative without violating one of two basic fairness conditions known as anonymity and neutrality. (→ 결정적 방법만으로는 공정성을 지킬 수 없음을 보여줌)
Anonymity requires that the collective choice ought to be independent of the agents’ identities (→ 공정성 조건 1: 누구인지와 상관없이 결과가 같아야 함) whereas neutrality requires impartiality towards the alternatives. (→ 공정성 조건 2: 선택지에 편파적이어서는 안 됨)
Allowing lotteries as social outcomes hence seems like a necessity for impartial collective choice. (→ 공정한 결정을 위해 무작위 추첨(lotteries)이 필요하다는 결론)
Indeed, most common “deterministic” social choice functions such as plurality rule are only deterministic as long as there is no tie, which is usually resolved by drawing a lot. (→ 실제로 동점이 나면 추첨으로 해결됨)
The use of lotteries for the selection of officials interestingly goes back to the world’s first democracy in Athens, where it was widely regarded as a principal characteristic of democracy, and has recently gained increasing attention in political science. (→ 역사적/현실적 사례)
? 정리
✅ 따라서 빈칸에 들어갈 정답은 ① call for randomization or other means of tiebreaking
원하면 내가 이 지문을 한눈에 볼 수 있는 그림/흐름도로 만들어서, 동점 상황 → 공정성 문제 → 무작위 해결 → 역사적 사례 순서로 보여줄 수도 있어.
그렇게 만들어줄까?
첫번째 댓글의 주인공이 되어보세요.