합성함수 차수논리 칼럼 + 필기노트 공개
게시글 주소: https://orbi.kr/00074799823
특강① - 성질 보존 [260928].pdf
특강② - 차수논리 [260928].pdf
특강③ - x좌표 해석 [260928].pdf
특강④ - 부분역함수 [260928].pdf
특강⑤ - 합성함수 총정리 [260928].pdf
아래의 2026학년도 9평 28번 문항과 관련해 작성한 칼럼을 공개합니다.
합성함수에 대한 이해가 본질이며, 성질 보존, x좌표해석, 차수논리, 부분역함수 등의 내용과 결합하여 6평, 9평 미적분 28번에 연속하여 출제된
합성함수+항등식
유형의 고난도 문항 정복을 목표로 하는 칼럼입니다. 칼럼의 각 제목은 다음과 같습니다.
➊편 「함수의 합성과 성질 보존」
➋편 「차수논리」
➌편 「f(g(x))=h(x)의 x좌표 해석」
➍편 「부분역함수」
➎편 「합성함수 총정리」
---------------------------------------------------
학습에 도움이 되실 수 있는 특강별 필기노트도 준비하였습니다.
특강을 보시기 전 대략적 내용 파악으로 활용하셔도 좋고,
특강을 보신 후 빠른 복습용으로 활용하셔도 좋습니다.
➊편 「함수의 합성과 성질 보존」 필기노트
크게 보기 (클릭하면 열립니다.)
➋편 「차수논리」 필기노트
크게보기 (클릭하면 열립니다.)
➌편 「f(g(x))=h(x)의 x좌표 해석」 필기노트
크게보기 (클릭하면 열립니다.)
➍편 「부분역함수」 필기노트
크게보기 (클릭하면 열립니다.)
➎편 「합성함수 총정리」 필기노트
크게보기 (클릭하면 열립니다.) 주의: 매우김!
---------------------------------------------------
[당부의 말씀]
어떤 스킬을 공부하더라도 원리부터 제대로 공부해야 수학 실력을 올릴 수 있습니다.
지금 공개하는 칼럼의 내용도 일시적으로 유행을 탄 것이고, 수능에 나올지 말지는 아무도 모릅니다.
만약 출제가 되지 않는다면 저희가 일반화해드린 내용을 암기식으로 공부하신 분들은 시간 낭비가 될 것입니다.
그러나 합성함수의 원리부터 기울기 곱하기·나누기, x좌표 해석과 부분역함수, 차수논리와 차수 곱하기·나누기까지, 모든 과정을 차근차근 유도하며 근본부터 이해한 학생이라면 이야기가 달라집니다. 그 과정에서 수학적 논리력과 직관력이 비약적으로 성장하며, 동일 유형의 문제가 실제로 출제되지 않더라도 수능 수학에서 고득점을 반드시 달성할 수 있습니다.
즉, 칼럼에서 다루는 내용(수학 스킬)을 활용하는 문제가 수능에 출제되든 아니든, 이 내용들을 제대로 공부하면 큰 도움이 되니, 올바른 방법으로 공부하시길 바랍니다!
2012년, 오르비에서 '한권으로 완성하는 수학'과 '이해원 모의고사'를 출간할 수 있었기에 지금의 제가 있고 지금의 저희 회사가 있습니다. 당시에는 지금처럼 고퀄리티 콘텐츠가 넘쳐나고 전반적으로 상향평준화된 환경이 아니었습니다. 2011~2012년에는 실제 수능과 유사한 '실전 모의고사'라는 컨텐츠 자체가 매우 없었고, 당연히 '수학 스킬'이라는 개념 역시 제대로 자리 잡지 못한 상황이었습니다.
그 시절 대학생 저자들에게 아낌없는 지원을 해준 '오르비'가 있었기에 지금의 고퀄리티 콘텐츠들과 수많은 수학 스킬의 토론의 장이 생긴 것이라고 생각합니다. 이 자리를 빌려 오르비에게 깊은 감사를 전합니다.
추가로, 지금 이 글을 보고 있는 모든 오르비 유저분들과 대한민국 수험생 여러분께 진심 어린 응원의 말씀을 드립니다. 무엇이든 잘 해내실 수 있습니다.
끝으로, 저와 저희 회사는 앞으로도 평가원 시험에서 유행하는 유형에 대하여 유의미한 스킬·접근이 있다면 언제든, 어떤 형태로든 대중에게 공개하여 대한민국의 모든 수험생이 차별 없이 학습할 수 있도록 돕겠습니다.
읽어주셔서 감사합니다.
0 XDK (+50,100)
-
50,000
-
100
-
반올림해서 정수단위
-
적중예감 주2회 푸는 중이고 실모안하는 날에는 십지선다 복습 ,적중예감 복습 중인데...
-
음음 믹스커피와 쌍두마차를 이루는 최고의 커피
-
노래추천해드림 0
짱유 - kiss my mouth all day 끝까지 들어야 함
-
아.
-
씁쓸하구만 이제 아예 바이바이다
-
97 97 1 85 98 언미 물지 기준 공대 라인좀
-
윤성훈은 세대 간 이동은 자녀와 부모의 과거와 현재의 계층의 상대적 이동을...
-
습하다 3
날씨때문에 더 피곤함…
-
하 맵찔이었네
-
역시 튜닝의 끝은 순정임뇨
-
글이나 함 써야지
-
저녁 머먹지 6
음하하
-
수특 영단어 외울까 생각중인데 그냥 원래 외우던거 외우는게 낫나?
-
이해원 n제 적백 연의 연구원이랑 비비기시작했다
-
뭐지
-
팔로우 까였네 5
이 ㅅㅂ
-
나도모르겠긴하다
-
평가원은 틀린게 납득이 확 되는데 사설은 그게 안됨
-
나만 독서 진짜 기출빼고 개어려웟나 어케9분, 13분30초 안에 풀라는거지
-
소문으로만 들엇는대
-
어디가 가장 멋있고 므훗한 이미지임
-
오르비정모예정 77
팔로우 200명이상 학습글이나 학습자료 쓰시는 분들 (과목상관무) 댓글이나 쪽지좀...
-
경희대 가고싶다 0
멋진 캠퍼스
-
저는 건강하다가 건강 + 하(동사파생접사) 라고 봤는데 왜 건강하다가 형용사인건가요?
-
강x 서킷x 시즌 다샀고 당근으로 서바 몇개 구매할건데 이 이상 안해도 되겠지?
-
(1) 증상 본인은 선천적 강박증, adhd인임 강박증은 중딩 때부터 어찌저찌 잘...
-
이감 파이널 팩2에 3회분 들어있는거 학원용으로는 몇회차인가요?
-
정법 질문 1
왜 2번 선지가 틀렸나요? 왜 위헌심사헌소가 아니고 권리구제헌소인지 모르겠어요
-
담요력 ㅁㅌㅊ 11
-
기상쌤..?? 4
-
무제에 있어서 보는데 느낌 있네
-
미적 76~80 맞는 실력입니다. 대성 수학 n제 추천좀 해주세요 0
대성패스있는데 전역한 군수생이고요 수학 n제 제대로 풀어보려는데 추천좀 해주세요 리트 홍준용 히카
-
내가 생각하기엔 걍 인간이면 기본적으로 지켜야 되는 부분 같은데 부모님이 교육...
-
너꺼라고 많이 쓰던데 너 거 캬 음음 언매러신가
-
흠... 닮은 거 같기도? https://orbi.kr/0006216231/...
-
쥐 꼴 동 맹
-
근데 사람 어케 구하지 ㅠㅠ 잡담방에 모의고사 같이 만들 사람 구합니다 이렇게...
-
히카 등급컷 보정인가요 무보인가요?
-
2-4점정도 높은느낌 문제는굿
-
재벌의 삶 3
https://m.entertain.naver.com/home/article/433/...
-
치즈나쵸 냄새나네
-
누 드 또 리
-
연애하는법) 3
ㄹㅇ루다가
-
연애하고싶어요 7
옯붕이들아연애하는법좀알려줘제발
-
ㅋㅋ
-
노트북 충전하는 아이들, 초등 교실이 이렇게 변했네요 2
【오마이뉴스의 모토는 '모든 시민은 기자다'입니다. 시민 개인의 일상을 소재로 한...
-
치토스가 뭐임? 28
설마 저 아니죠? 요즘 오르비 별로 안했는데
-
소문듣고 왔습니다 17
ㅋㅋ
-
"솔직히 너거누가삼" 15
(오류범벅무료실모를뿌리며) 이거 어떻게푸는지 아직도이해못함 ㅋㅋ
우와
쌤 요새 오르비 자주 오시네여
오늘은 좋은 칼럼 공유하러 들렸습니다 ㅎㅎ
이런 분이 오셔야 오르비가 살아납니다
대
대
대
대
대
대
대
상태에 연애중 떠있어서,
좋아요 취소했습니다
헉ㅠㅠ 한번만 봐주세요
아니 근데 선생님, 오르비 글쓰기 기능에 이미지 숨기기도 있나요? 크게 보기 저거 어떻게 하신 거죠
코드짜서 적용했습니다 ㅎㅎ

아 그렇군요. 답변 감사합니다킬캠 2-2. 30이 이거 저격이던데
역시... 킹우진센세..
좋아요 속도 ㄷㄷ

평가원도 이거볼거같아서걍 공부안하기로했다
그래도 꼼꼼히 공부해두시면 도움 될거에요!
드릴건업지만덕코라도...........한완수사랑해요
감사합니다! 응원합니다.
그냥 현장에서 안보이면 좌표벅벅하면 되는 대 기 하
수능 수학계의 신두형
대 해 원
카르텔 척결 goat ㅋㅋ
대해원과 함께라면 나도 대치동 학생
이해원쌤 사랑해욤
감사합니다 ㅎㅎ
인스타에도 올리셔서 가끔 구경하고 있습니다 ㅋㅋㅋㅋ
팔로워셨군요! 감사합니다.
머장님 ㅎㅇㅌ
님도 ㅎㅇㅌ

머장님 복귀 대환영!감사합니다 ㅎㅎ
형 사랑해요
나 평가원장인데 이거보고 합성함수 저격하기로 했다 #~#
이 칼럼을 제대로 학습하신 분이라면 저격당해도 맞추실 수 있으실 겁니다 ㅎㅎ
해원쌤 찬양합니다
감사합니다 ㅎㅎ 학습에 도움이되시길 바랍니다.
대 대 대
헉 이런게 존재했군요...
혹시 여기서 질문드려도 될까요..?
미분불가능한 함수에 대해 좌우 차수를 구하는 것에 대해 혼동이 왔습니다..
예로 들어주신 sqrt(|1+cos x|) 의 x=pi에서,
겉함수인 sqrt(|x|)는 좌우 각각 1/2차라고 적혀있는데요,
차수의 정의 상 좌측 차수는
lim (x->0-) sqrt(|x|) / (x)^n = 0이 아닌 상수인 양수 n이 될 것이라고 이해했습니다.
근데 밑이 음수인데 지수가 1/2인 수는 실수에서는 없기 때문에
위의 식은 정의 자체가 안되지 않나요..?
제가 차수를 뭔가 잘못 이해하고 있는 것 같습니다...
혹시 설명해주실 수 있을까요....?
이렇게 좋은 자료 무료로 풀어주셔서 정말 감사합니다 !!
(차수논리 빠삭한 다른 오르비언 분들도 답변 달아주시면 정말 감사하겠습니다 ㅠㅠ)
차수논리를 정확하게 수식으로 이해해서, 실전에서 자신있게 쓰려고 질문드려요.
정의가 안되는 것이 맞습니다. 자연수 차수가 아닌 실수, 유리수 차수의 경우 분모의 밑에 절댓값을 씌워서 생각해야 합니다.
즉, 분모를 |x|^n으로 바꾸어서 생각하셔야 합니다. 그래야 말씀하신 정의 상 이상한 일이 생기지 않습니다.
관련 내용은 칼럼 2편 ‘차수논리‘의 15쪽 각주와, 칼럼 5편 ‘합성함수 총정리’의 12쪽 각주에 간단하게 나와 있습니다.
공개 칼럼에서는 차수를 처음 정의할때 절댓값이 들어가면 비주얼적으로나 논리적으로나 부담이 커서, 자연수 차수만을 정의하고 사고를 확장만 하는식으로 서술해두었습니다.
수식적으로 완벽하게 논증하려면 좀더 세밀한, 다른 정의가 필요한 것이고, 그것이 절댓값을 활용한 정의라고 생각해주시면 됩니다.
아하 그렇군요.. 이해가 되었습니다,
감사합니다 선생님 !!
감사합니다 선생님
올해 저격먹겠네
등급컷이 오르거나 저격먹거나...
내년 한완수에 들어가나요
대해원님 기하 N제 매우 맛있게풀고있습니다 (정품!!!! 풀커리임)
그저 goat..
통통이지만 정독하고 갑니다
모의고사 평가원/실모들 풀어보면 몇분정도 나오시나요.?
저희 회사는 당일 해설지 작성, 총평 작성 등을 지속적으로 하면서 푸는 경우가 많아 저 뿐만 아니라 연구원들 대부분이 제대로 시간재고 풀 수 있는 상황이 잘 없습니다. 아무래도 수험생 시절 보단 계산능력이 많이 저하된 건 체감하고 있습니다 ㅎㅎ
친절한 답변 감사드립니다
선생님 이번주에 해모 즌2 다 풀었는데 ㄹㅇ 6, 9평 보는줄 알았습니다.
친구가 저 이해원님 닮았대요!!
선생님은 초레전드GOATGOATGOAT십니다…
진심 김현우 강기원 현우진이랑 연장선으로 수학의 신 그 자체임
전에 한완수 보고 그래프 그리는 거 독학해서 그걸로 미적분 먹고 사는데 오늘 또 하나 정리하고 갑니다 돈 많이 버세요 진짜 goat 그 자체…
갓만한~~~최고입니다!
오늘 실모 오자마자 풀었는데 무참히 찢겼습니다….
퀄은 진짜 올해 푼 모의고사 중에서 역대급
찌그러뜨리기랑 n축이랑 같은건가요…? 직관적으로 안와닿아서요
항상 좋은 자료 감사합니다. 저 재수 때 이해원님 책이랑 자료들 보면서 미적분 공부하는데 정말 도움이 많이 되었습니다.
감사합니다