생명수 [1381183] · MS 2025 · 쪽지

2025-06-17 22:43:50
조회수 107

[칼럼] 생1 이형 접합으로 찍는 이유

게시글 주소: https://orbi.kr/00073513791

감각적인 직관을 동원하여 찍을 때 사람들은 유전자형이 이형 접합성인 경우가 정답일 것이라고 찍는 경우가 많아요. 물론 이형 접합성인 경우가 항상 답인 것은 아니지만, 이형 접합성인 경우가 정답일 확률이 높은 것은 맞아요. 그 이유가 무엇일까요?


이는 최대 최소 논리와 관련이 있어요. 대체로 적은 수의 조건들로 구성된 문제의 정답이 하나로 확정되기 위해서는 정답이 극단적이어야 해요. 최댓값이나 최솟값이 정답으로 설정될 가능성이 높다는 거죠. 유전자형이 이형 접합성인 경우에 특정한 확률이 최소가 돼요.


23학년도 수능 9번이에요. (가)~(다)의 표현형이 모두 같을 확률을 A, (가)~(다)의 표현형 중 두 가지만 같을 확률을 B, (가)~(다)의 표현형 중 한 가지만 같을 확률을 C, (가)~(다)의 표현형이 모두 다를 확률을 D라고 할게요. (가)의 표현형이 같을 확률을 P, (나)의 표현형이 같을 확률을 Q, (다)의 표현형이 같을 확률을 R라고 할게요.


A+B+C+D의 값은 1이고, P+Q+R=3A+2B+C예요. A=1/4이고 B+C+D=3/4이므로 B=3/4, C=0, D=0일 때 3A+2B+C는 최댓값 9/4를 가져요. 부모의 (가)~(다)의 표현형이 모두 우성이므로 P, Q, R의 최솟값은 모두 3/4으로 같고 P+Q+R의 최솟값은 9/4예요. 따라서 P+Q+R=3A+2B+C=9/4예요.


3A+2B+C의 값으로 9/4보다 더 큰 값이 가능했다면 답으로 가능한 케이스가 여럿 존재했을 거고 문제가 풀리지 않았을 거예요. 다시 말해 3A+2B+C의 최댓값은 P+Q+R의 최솟값과 같도록 문제가 설계될 수밖에 없었고, P+Q+R의 값이 최소일 때인 (가)~(다)의 유전자형이 모두 이형 접합성인 경우가 이 문제의 정답일 수밖에 없다는 거예요.


이 문제를 풀 때 위의 과정을 떠올릴 필요는 없어요. 위의 과정은 정답을 유전자형이 이형 접합성인 경우로 찍는 것이 합리적인 이유를 설명하는 내용이고 문제에 실전적으로 접근하는 방법에 관한 내용은 아니니까요. 다만 최대 최소 논리가 이용되었음을 예상하면서 문제에 접근하는 것은 좋은 자세예요.

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.


  • 첫번째 댓글의 주인공이 되어보세요.