생명수 [1381183] · MS 2025 · 쪽지

2025-06-14 22:48:11
조회수 186

[칼럼] 거리곱의 기본 1탄

게시글 주소: https://orbi.kr/00073475907

거리곱은 계산할 때 다항함수의 식을 적는 대신 x좌표와 x좌표 사이의 거리를 이용하는 방법이에요. f(x)=mx(x-1)(x-4)인 경우 f(3)을 구할 때 식을 이용하면 f(3)=m×3×(3-1)×(3-4)=m×3×2×(-1)=-6m이고, 거리곱을 이용하면 f(3)=±|m|×3×2×1=-6|m|이에요. 부호는 그래프의 개형에 대해 생각하면서 마지막에 붙이면 돼요.


n중근이 있는 경우에는 거리를 해당 근의 개수만큼 곱해주면 돼요. 중근인 경우 2번, 삼중근인 경우 3번 곱하는 식으로요. f(x)=mx3(x-3)인 경우 f(2)를 구할 때 식을 이용하면 f(2)=m×23×(2-3)=-8m이고, 거리곱을 이용하면 f(2)=±|m|×23×1=8|m|이에요.


다만 허근이 존재하는 경우에는 거리곱을 사용하기 어려워요. f(x)=x4-1인 경우, f(x)=0의 근은 ±1 또는 ±i예요. (i2=-1) 거리곱을 사용하여 f(2)의 값을 구하기 위해서는 3, 1, 2+i, 2-i를 곱해야 되는데 식을 작성하지 않고 그래프만 보면서 허근의 값을 알기 어렵기에 허근이 있는 경우에는 식을 이용하여 계산하는 게 더 나아요.


x축이 아닌 다른 직선을 기준으로 계산할 수도 있어요. 거리곱을 이용하여 구한 값은 기준이 되는 직선으로부터의 상하 거리를 의미하므로 f(x)=m(x+1)x(x-3)+6인 경우 f(1)을 구할 때는 직선 y=6을 기준으로 ±|m|×2×1×2=-4|m|을 구한 뒤 6을 더해 f(1)=-4|m|+6임을 알 수 있어요.


기준이 되는 직선이 x축에 나란할 필요는 없어요. x축과 어떤 직선의 교점의 x좌표를 모두 아는 경우에도 같은 방법으로 계산할 수 있어요. f(x)=m(x+2)2(x-1)+x+1인 경우 f(2)를 구할 때는 직선 y=x+1을 기준으로 ±|m|×42×1=16|m|을 구한 뒤 x+1에 x=2를 대입한 값인 3을 더해 f(2)=16|m|+3임을 알 수 있어요.

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.