[이동훈t] 260628 - 이계도함수가 주어지면 반드시 두 번 미분? (추가 설명)
게시글 주소: https://orbi.kr/00073459467
2026 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
어제 올려드렸던 칼럼 ...
[이동훈t] 6모 28번 분석 (+해설3개)
을 다시 읽어보니 ...
제대로 설명이 되지 않은 단락이 있어서
원본 글을 아래와 같이 추가+교정하였습니다.
.
.
.
.
.
.
원본에서도
이계도함수가 존재한다.
+
두 번 미분하면 방정식 f(x) = 0 의 근을 구할 수 있다.
이므로 두 번 미분한다. 라고 설명하였지만.
당연히도 ...
이계도함수를 갖는다.
라는 조건 만으로
무지성으로 두 번 미분해서는 안되고.
두 문제 260628, 170930 가
큰 틀에서 ...
두 번 미분해서 세 개의 항등식(방정식)을 만들고,
각 항등식(방정식)에 적절한 x 의 값을 대입하여
미정계수를 결정한다.
라는 전형적인 풀이를 공유하고 있기 때문에
두 번 미분한 것입니다.
다시 말하면
위의 두 문제는 각각
고1 과정의 항등식과 미정계수의 결정,
함수의 방정식의 결정(미정계수의 결정)
이 결합되었고,
이에 따른 전형적인 풀이를 적용하기 위하여
두 번 미분한 것입니다.
이상의 설명을 표로 정리하면
다음과 같습니다.
위의 표를 이해하시면
왜 두 문제가 모두
두 번 미분해야 하는지
알 수 있을 것입니다.
.
.
.
오해를 살 수 있는 부분들이 있어서
추가적인 설명을 올려드립니다. :)
다음에 또 만나요 ~!
노베 기출 수학1+수학2+미적분 (PDF)
https://docs.orbi.kr/docs/12978
노베 기출 수학1+수학2+확률과 통계 (PDF)
https://docs.orbi.kr/docs/12979
2026 이동훈 기출 기하 PDF
https://docs.orbi.kr/docs/13000/
고1 기출 평가원+교사경 (무료PDF)
학습법, 수학 칼럼 링크 모음 ('23~'24)
2026 이동훈 기출 e-book
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
무서움ㅠㅠ
-
정시는 잘보면 메쟈의 중경한 + 설치 설수의 생각하고 있고 이번 6모 언매100...
-
아니 요요님 3
갑자기 왜 병맛되심
-
확통기준 기출만 익히면 확통 23-30 다 맞추기 가능하다vs불가능하다
-
너무 안일햇네
-
살찌고싶다 1
존나게 쳐먹는데도 살이안쪄
-
김범준선생님이랑 정병호선생님중에 누가 좋을까요 두분 다 커리 들어본 적 없는데...
-
시발 전쟁이요?? 12
에헤이
-
개념 빠르게 돌리려고 하는데 독학서 추천드립니다
-
외건대전 종료 ㄷㄷ
-
메인글 기하 3
기발하네
-
미안하다 고맙다 4
오래된 생각이다
-
개이득
-
사실 안 풀었음 풀시간이없음
-
이거 됨? 4
히카 29번 풀다가 이런 식으로 치환해서 풀었는데 딱히 오류 있는 풀이는 아니죠?
-
오늘부터 시행인데 세종대 안쓰더라도 그 이상 대학에서도 미적 기본기 점검하기에...
위와 같은 초월함수의 근사를 이용한 풀이도 가능합니다.
기하(그림)이 편한 분들은 이 방법이 바로 보였을 것 같기도 합니다. :)
원본 칼럼 글
[이동훈t] 6모 28번 분석 (+해설3개)
https://orbi.kr/00073446651
에 위의 근사+기하 접근도 포함시켰습니다.
아마도 이 문제에 대해서 떠올릴 수 있는 아이디어를 거의 다 포함시킨것 같습니다.
원본 글 읽으신 분들도 다시 한 번 더 읽어보시길 바랍니다. :)
고트 ..

감사감사 ~