[5월호] 우일신(又日新) 월간 N제 무료 배포
게시글 주소: https://orbi.kr/00073133759
[문제지] [5월호] 우일신 (又日新) 파본형 월간 N제.pdf
[해설지] [5월호] 우일신 (又日新) 파본형 월간 N제.pdf
우일신(又日新) 파본형 월간 N제 1월호 : https://orbi.kr/00072113025
우일신(又日新) 파본형 월간 N제 2월호 : https://orbi.kr/00072313277
우일신(又日新) 파본형 월간 N제 3월호 : https://orbi.kr/00072684885
우일신(又日新) 파본형 월간 N제 4월호 : https://orbi.kr/00072906671
***정오 사항
[0514 00:31] 15회 미분편 22번 문항 : 문항 오류 발견되어 수정중입니다. 젠장ㅠㅠ
확실하게 검토해서 수정되면 파일 교체하고 이 게시물에 기록해두겠습니다.
[5월호] 미분편을 무료 배포합니다. 수2의 두 번째 테마입니다.
5월 모의고사는 잘들 보셨을까요? 현역 수험생들에게는 쉽지 않았던 시험인 것 같습니다.
결과가 좋았던 나빴던 6월 모의고사를 위한 연습이라고 생각하고 차분하게 남은 3주 알차게 보냈으면 합니다.
향후 계획!
[6월호] : 수2 적분편 30제
[7월호] : 수1 파이널 50제
[8월호] : 수2 파이널 50제
[9월호] : 파이널 모의고사 (미적분/확률과 통계) 3회
[10월호] : 파이널 모의고사 (미적분/확률과 통계) 3회
*** [5월호] 피드백 수집 ***
[5월호]에 대한 피드백도 받아보려 합니다. 인원수의 제한은 없으니
- 5월호 풀이 인증 (간단한 사진)
- 피드백 (난이도/퀄리티 및 배치 등)
- 연락처 (기프티콘 수령용)
을 thinkers.con@gmail.com으로 보내주시면 됩니다.
피드백을 보내주신 분들께는 소정의 보상이 있을 예정입니다.
- 피드백 보상 : 기프티콘 (스타벅스 음료 1개)
- 피드백 기한 : 6월 15일
- 기프티콘 발송 : 6월 16일
다음은 [6월호] 적분편으로 돌아옵니다.
좋아요와 팔로우를
많이 눌러주시는 만큼 [6월호]가 더 빨리 공개됩니다.
0 XDK (+5,000)
-
5,000
-
87.9라는데 90중후라 전교권 잘하면 가능할듯 실수해서 2 간당간당할까봐...
-
영어 풀어보라해서 풀까 생각중인데 탐구는 사문생윤임
-
( 2025년도 제14회 변호사시험 합격자 통계 ) 1
https://www.veritas-a.com/news/articleView.html...
-
학교에서 농구하다 집와서 그런가
-
조기입학하고싶다 5
수학쌩노베였다가 작년 수능 끝나고 수1들어가서 남은 시간이(특히 수학) 너무...
-
이렇게 뜨면 어느 대학 갈 수 있나요 이과 문과 상관없시요
-
ㅈ된거같음 고3때는 커피로 버텼는데 위장 박살나서 커피 한모금도 입에 못댐...
-
소..솔직히...덕코..자랑하면 안된다고 생각해요... 9
저는...
-
지문 난이도는 어려울 것 같음 아니면 그냥 현상 유지일 것 같음?
-
어제까지였네 시발 ㅋㅋㅋㅋ
-
우일신(又日新) 파본형 월간 N제 1월호 :...
-
개잣같은 시험은 왜 출제하는거임 버릇 잘못들게
-
2026 대성패스 25에 완전 양도합니다 인증 다 해드릴 수 있습니다
-
요즘엔 경북대나 경주대나 그게그거 ㅋ참나
-
학원 늦게 옴 ㅜㅜ 7시까지는 올라하는데 8시에왓오. . .
-
대선 출마합니다 2
1 삼청교육대 재건 mz조폭및 이대남들 잡아다 정신개조 실업급여 조사하여 부정수급시...
-
성균관대랑 경북대중에서 서울사는애들도 고민했다는데 이거 ㄹㅇ임?
-
이대남 이 미친새끼들
-
생명과학 실모 추천해주세여 백호말곤 풀어본게 없음
-
평소에 수학 4~5 나오고 작수는 4떴어요 최저만 맞추려다가 불안해서 수학공부 지금...
-
하 절대 탈릅 안하실거같았고 안했으면했던분인데 덕코주실때부터 느꼈어야 했나
-
[Latte] 옛날 오르비 풍경 ㄹㅇ ㅋㅋㅋㅋ(실화) 15
1. 서성한 붙으면 수능 망했다고 등록도 안하고 쌩재수함 2. 연고대 마이너 붙으면...
-
공차 머 먹지 3
흐음...
-
대가리가 실시간으로 깨지는게 느껴짐 ㄹㅇ로..
-
4규 다음 n제 4
4규 시즌2 풀고 바로 드릴 들어가도 괜찮을까여 집에 드릴5랑 드릴 워크북 있어서유...
-
폰케깨졋네 4
아끼는 케이스였는데..뭐사야하지
-
서바이벌 강대는 못구하니 제외하고 윤성흔 최적 손고운 임정환 사만다 ebs...
-
혹시 사문 엔제 안하고 기출 ebs 실모만 해도 되나요 1
엔제는 안하고 기출 완전히 익히고 수특 수완 그다음 실모만 무한뺑뺑이로 해도 되나요?
-
글 읽는데 난독증 있는것 같은데 사문 2면 내가 난독증이라고 착각하는건가요 ? 진짜...
-
나도 삼대남 되어보니 알겠음 이대남(90년대생 = 현 삼대남) 들은 그냥 존나 패야...
-
둘이서 쉬는 시간이나 쉬는 날에 오르비하는 거 보이면 꼽주나?
-
28 29 30정복 드가자 드릴하다 일단 유기
-
https://orbi.kr/00073130027/%EC%9D%B4%EA%B1%B0%...
-
ㅇ
-
제곧내
-
예전 소속사에서 자컨도 안찍어주고 원래 라이브도 잘안켜서 무대 아래 모습? 보려면...
-
길고양이 핥기 13
-
지금까지 김민정쌤 들엇는데 이번에 한번 바꿔보려는데 ㄱㅊ을까요
-
생윤 2
개념 공부할때 인강 꼭 필요한가요? 은근 개념 인강으로 안하는분들 많은거같아서요
-
점심 13
머묵지 점메추받아요
-
5모에서 수학이 2가떠서 6모 목표 12111로 수정합니다 그나저나 정법은 뭔...
-
지각!! 4
치코쿠치코쿠
-
얼버기 0
-
그럴만한 일이 있음
-
안냐세요 저는 고2 08년생입니다. 저는 정시 공부를 나름대로 열심히 하는 학생인데...
-
쌍사가 개꿀인 이유 본인 세계사 용기+마더텅 끝냄 이번 5모 48점이고 동사는...
-
https://orbi.kr/00073130027/%EC%9D%B4%EA%B1%B0%...
-
금요일이나 월요일도 주말이여야함
떴구나!
GOAT
언제나 좋은 자료 감사합니다!!
선생님 근데 사소하긴 하지만 게시물에 오타 하나 있어요 ㅎㅎ
감사합니다! 수정했습니다!

가마샇ㅂ니다넵 감사합니다!
감사합니다!
맨 마지막 문제 f(0)=0 조건 없이도 저게 확정이 되는건가요..?
넵, 다음 2가지 사실로부터 확정할 수 있습니다.
(1) g(t), h(t)가 모두 t=0에서 불연속이라는 사실
(2) g(t)는 t=a(<0)에서 불연속, h(t)는 t=b(>0)에서 불연속이라는 사실
a가 음수이고, b가 양수라는 조건이 굉장히 중요합니다. y=f(x)의 그래프가 두 직선 y=1/2x+a, y=1/2x와 모두 접하면서 동시에 두 직선 y=-1/2x, y=-1/2x+b와도 모두 접해야하므로 접하는 상황의 그래프가 확정됩니다 (해설지 참조) 이때 두 직선 y=1/2x와 y=-1/2x의 교점이 원점이므로 원점이 y=f(x) 그래프 위의 점임을 알 수 있습니다.
해당 문항과 유사 기출인 2020학년도 수능 나형 30번의 경우를 살펴보면, 이 문제에선 f(0)=0이라는 조건이 제시되어 있습니다. 이는 y=f(x)의 그래프와 y=x, y=-x가 모두 접하지만 각각 위쪽에서 접할 지, 아래쪽에서 접할 지 확정할 수 없으므로 f(0)=0 이라는 조건을 제시함으로써 상황을 제한했다고 볼 수 있으며, 저희 문제의 경우 a와 b의 부호를 제시함으로써 상황을 제한했다고 볼 수 있습니다.
답변이 학습에 도움 되길 바랍니다!
아 제 말은 이렇게 f(0)=0가 아니면서도 문제 조건 충족시키는 함수를 적당히 만들 수 있지 않나 싶어서요…
말씀해주신 상황에 대해 저희 팀 내부에서 재검토해본 결과, 지적해주신 내용이 타당하여 해당 문항은 논리적 결함을 갖고 있는 것으로 판단됩니다. 먼저, 학습에 혼란을 드린 점에 대해 깊은 사과의 말씀 드리며, 해당 문항은 빠른 시일 내로 수정하여 자료를 재첨부하도록 하겠습니다.
저희 컨텐츠에 관심을 갖고 시간을 내 세심하게 지적해주신 점에 대하여 감사드리며, 앞으로 더욱 더 꼼꼼하게 검토하여 보다 완성된 컨텐츠를 공급할 수 있도록 노력하겠습니다.
우일신n제 전반적인 난이도가 어떻게 되나요??
우일신 N제는 9번 ~ 15번 / 20번 ~ 22번의 모의고사 문항을 한 세트에 담은 컨텐츠로서 다양한 난이도의 문항을 골고루 맛볼 수 있습니다. 모든 문항을 도전하기 위해선 기출을 모두 돌린 학생 + 2등급 이상의 학생들에게 추천합니다. 물론 3등급 이하의 학생들이 풀어도 초반 4점 문항에서 배워갈 것이 많을거라 기대할 수 있지만 킬러문항(15, 22번)은 접근하기 빠듯할 것으로 예상합니다.