이 문제 풀 수 있는 분 계신가요??????
게시글 주소: https://orbi.kr/00073091937
학력 높아보이는 곳에 여기저기 물어보고 있는데 아무데서도 해결이 안돼요
어케 푸나요?? 논리적으로 설명을 못하겠음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국힘 지지했었는데 이제는 지지못하겠네 나라꼬라지..
-
조건 가의 함수가 2,4를 근으로 갖는 이유가 분모가 0 이되어버려서 그런가요...
-
흐흐
-
몰랐어요 난 내가 별이라는 것을
-
얼마 전에 읽었던 도서랑 너무 비슷한데요
-
수특이나 인강은 본격적으로 8월부터 공부하려고하는데 1월부터 듀오링고하고있고...
-
의미 있없
-
여기서 원점대칭은 어떻게 봐라봐야하나요 삼차함수의 미정계수와 관련 있어보이는데...
-
이승효쌤 입장정리입니다 참고로 저는 댓글알바도 아니고 조교도 아니고 그냥 수학...
-
이승효가 풀이 베꼈다는 게 개쌉소리인 이유를 알아보자.. 11
ㅎㅇ 나다 내가 누구냐고 수학3따리 재수생이다 흑흑 제목이 워딩이 개쎈데 내가...
-
[속보] 국민의힘, 김문수 선출 취소…새벽 4시까지 새 후보 등록신청 접수 7
국민의힘이 김문수 대선 후보의 선출 취소 절차를 완료했다. 동시에 새로운 대선...
-
안철수 서울대 교수가 SBS ‘힐링캠프, 기쁘지 아니한가’에 출연해 그 동안의...
-
아까 글 올린 노베인데요... 기하를 어떻게 할까 하다가 일단 공간도형파트만...
-
정법 현강 낄까 말까 고민햇는데 올해는 먼가 불안해서 그냥 9모 이후에 다니기로 함
-
20대대선이 진짜 역대급 개병신대선인줄 알았는데 진짜 지금보면 선녀네 21대는...
-
국힘은 이제 민주주의 사회의 공당이라고 봐주기도 부끄럽네 1
중국 공산당이랑 형태 제일 비슷할듯 좆주당보다 기괴해짐
-
얼버기 13
강아지가 방문 긁어서 인남
-
오노추 1
심심하면 노래나 듣고가셈
-
난이도 궁금 왜냐? 오늘 풀러가는데 벌써부터 풀기 싫음^^!
-
작수때 ㄹㅇ 시간 한 50분? 남았는데 13 14 15 20 21 22 27 28...
-
수령까지 기간 얼마걸림
-
다들 용돈 1
얼마나 받으심? 책값 제외한 값.
-
짜증나
-
으아아악 정상화기원...
-
생활패턴 망가짐 5
잠이 안 온다 ㅠ
-
이원준 강민철 2
이원준 독서 강민철 문학 이케 들어도 되나요 막 방식이 충돌해서 이상해지고 그러지 않겠됴?
-
점심을 국밥 짜장면 or 편의점 밖에 못먹어서 서러운 거 빼곤 다 좋은 듯
-
나 순수한건가 10
님들이 귀엽다고하면 나 진짜로 귀엽다고 생각하게되고 님들이 댓글달아주니까 인싸가...
-
화작만 안 틀렸어도 3모 1 5모 2 떴을 텐데...... 그 자료? 문제도 어렵고...
-
잔다 2
르크
-
기출 푼 후에 1. 내가 기출을 얼마나 잘 습득했는지 2. 계산 실수를 잘 잡고...
-
현역 5모 후기 1
탐구만 보면 머리가 안돌아가네요 평소에 물리 모고도 많이 풀어봤는데 왜 이렇게 꼬였을까요..
-
각각 난이도가 어떻게 되나요? 드릴이나 어싸같은 문제집이랑 비교했을때요
-
김상훈 문학론 4
지금 박광일 듣고있는데 지금 김상훈 문학론 듣기 시작하기엔 너무 늦었나요..? 아님...
-
그래도 이재명은 못뽑겠다 준스기로 가야하나
-
여행 떠나고 싶다 14
고독을 즐길 줄 아는 사람이 되고 싶다
-
구체적으로 어떤 부분이 쉬웠나요? 전부..? 나는 왜 지금까지 쉽다는 모고는 쉽게...
-
사탐런 고민 2
지금 69수능 지구과학 풀면 40점 정도 나오는데 사문으로 런쳐서 50점 만드는게...
-
사탐 강사 추천 1
사탐은 처음인데, 우선 과목은 사문과 생윤으로 골랐습니다. 사문 -...
-
삼수도 개힘든데 26
그이상은 도대체 어케 하는거임 약간 도의 경지를 넘어선듯
-
잘자요 14
-
3모50점 5모47점인데 중간중간 비는 개념이 보이긴함 더프같은거도 풀어보면...
-
요즘 참 15
요즘이네
-
공통접선인건 알겠는데 x축에 접한다<<이걸 대체 어떻게 써야하는지 모르겠음...
-
교대 반수,로스쿨 13
교대 재학중인데 이미 2학년이라 2년만 더 참으면 자격증 나와서 그냥 다닐까...
-
3초 고민함 거울을 보고서 그만둠
-
확통 29 0
형들 아직 확통 감잡는중인데 내 풀이한번만봐줘 3528나옴 ㅋㅋㅋㅋㅋ
h(x)의 x=a에서 미분가능성, g(x) 불연속점에서의 미분가능성
다들 풀이 감사합니다
지금 막 강기원쌤 겨울 vod 듣기 시작한 낮은 1등급 따리라 풀이를 봐도 g(x) 함수에 대한 이해가 많이 부족한 것 같네요
우선 vod 다 들으면서 이 주제에 대한 기초 학습부터 하고 오겠습니다...
다들 풀이 감사합니다
지금 막 강기원쌤 겨울 vod 듣기 시작한 낮은 1등급 따리라 풀이를 봐도 g(x) 함수에 대한 이해가 많이 부족한 것 같네요
우선 vod 다 들으면서 이 주제에 대한 기초 학습부터 하고 오겠습니다...
다들 풀이 감사합니다
지금 막 강기원쌤 겨울 vod 듣기 시작한 낮은 1등급 따리라 풀이를 봐도 g(x) 함수에 대한 이해가 많이 부족한 것 같네요
우선 vod 다 들으면서 이 주제에 대한 기초 학습부터 하고 오겠습니다...
식으로 접근: f(g(t))=t에서 역함수꼴 발견
or g(x) 미분계수가 해당지점 f(x)의 미분계수 역수인 것 정도만 알아도 충분합니다.
어려운 부분은
g'(t)가 0일 수 없다는 점과, f'(x)=0인 지점에서 g'(x)가 발산한다는 점이 변별 포인트입니다.
단순 g(x)해석이 안되시는 거면 250628이랑 f와 g의 정의가 비슷하니 한 번 풀어 보시면 좋을 것 같습니다
아 역함수로 보니까 g'(t)가 0일 수 없다는 것도, f'(x)=0인 지점에서 g'(x)가 발산한다는 것도 직관적으로 이해되는 것 같습니다!
그럼 f(x) 개형에 따르면 g(x)가 불연속인 곳은 f(x)가 극대인 곳 말고는 존재할 수 없고,
---> 그렇기 때문에 h(x)의 유일한 불연속 점인 x=a가 곧 f(x)의 극댓값이 되는 것인가요?
h(x)의 불연속 점이 "오직 x=a 하나뿐" 이라는 조건이 없는데 f(x)의 극댓값은 a인지 뭔지 알 수 없게 되는 것이 맞나요???
그리고 g'(a-) -> 무한대 이므로 a=0 에서 g'(a-) -> 무한대 인 것은 역함수를 통해 이해했는데, 거기서 a=0이라는 결론이 나오는 것은 두번째줄 좌,우미분계수가 서로 같다는 식에서 "ag'(a-)" 라는 항이 어떤 값으로 반드시 수렴을 해야만 하기 때문에, 무한대 * 0 이어야 하기 때문인가요??
그리고 a=0 이기 때문에 첫번째 줄의 등식에 의해 우변의 g(a+) = 0 이 되고 이를 f(x)의 그림 위에서 관찰해보면 극대 살짝 위의 y=t 와의 교점의 최솟값이기 때문에 저 위치가 x=0으로 확정되는 것이고,
아직 g(a-) 즉, f(x)의 극대의 x좌표는 아직 모르기에 k라 두고 두번째줄 식에 아는 것을 전부 대입하면 k + 0 = 0 - g'(a+) 이므로 k = - g'(a+)가 되고 g'(a+)는 그림으로 관찰하면 f(x)의 x=0에서의 접선을 역함수 취한 직선의 기울기이므로 1/k^2 ---> 따라서 방정식 풀면 k = -1
제가 이해한 것이 맞을까요???
너무 길어서 죄송합니다 ㅠㅠ
1. f극대 -> g불연속 이므로 g불연속점은 1개인 것은 맞습니다.
하지만 h(x)는 미분가능합니다.
h(x)의 유일한 불연속점 ... h(x)가 미분불가능할 가능성이 있는 유일한 점이라고 이해하면,
h(x)는 불연속함수(일 수 있는) g(x)로 정의되기 때문에 x=a가 유일한 점은 아닙니다.
풀이는 g(x)가 x=a라고 가정한 귀류법을 이용한 갓입니다.
좀 더 논리적인 풀이로는 g(x)가 실수 전체 미분가능일 리는 없을 것이라 추론했고, g(x)의 미불점을 상쇄시킬 수 있는 곳은 x=a뿐이라고 추론도 가능합니다. 참고로 g(x)가 실전미가라고 가정하면 앞서 풀은 x=a에서 g'(a)=0이라는 같은 결론이 나오긴 합니다
2,3질문은 정확합니다. 제가 풀이에 계산셍략을 많이 하는 편이라서 최대한 적는다고 적었는데 지금 보니 논리성이 떨어지게 적었네요
아 제가 오타를 냈네요 죄송합니다... g(x)의 불연속점이 x=a인 것을 구한 시점에서 h(x)의 불연속점이 x=a밖에 없는 것으로 이해하고
6번째 줄에 "이라는 조건이 없으면" 이라고 써야할 것을 "이라는 조건이 없는데" 라고 아예 다른 의미로 해석되게 써버렸네요