2026 기하 5모 풀이
게시글 주소: https://orbi.kr/00073080166
안녕하세요 기하 5모 풀이 올립니다
먼저 떠오른 발상들로만 풀었기 때문에 사고과정과 함께 실전에서 생각하시는 방향을 배워가시면 좋을 것 같습니다
23번
풀이과정은 다양해보이나 시간이 없으니 가장 빠른 풀이로
선분CD 삼등분점 잡고 AC의 종점과 맞물리기
그 후엔 피타고라스
24번
장축 단축 바꿔서 케이스 2개
25번
우선 포물선 위의 점이 주어졌다
따라서 접선의 접점공식을 사용해야한다
접선과 포물선의 준선과의 교점을 좌표로 나타낼 수 있고
결국 대입하면 P만 남을 것이다
26번
쌍곡선이 주어졌으니 그림을 그리고 상황을 파악해보자
우선 점근선을 구해보자
그 후 점근선과 x=3에서 수직인 직선을 그려보면
밑변 높이를 특정지을 수 있겠다
27번
우선 문제를 읽어보면 두 포물선의 준선이 같다고 한다
즉 AF'도6 이란 이야기
그래프를 그려보면 이등변 삼각형이 보인다
그리고 포물선이니까 준선과 꼭짓점 사이의 거리와 꼭짓점과 초점사이의 거리는 같을것이다
그러면 6을 삼등분 할것이고 이등변 삼각형을 확정지을 수 있겠네...
따라서 높이와 밑변을 전부 알 수 있다
28번
우선 타원의 방정식을 세울 수 있고
P0 (a,b) 라고 좌표를 주었으니 대입하는게 우선일것
그 다음에는 넓이가 최대가 되는 상황을 생각해야 하는데
삼각형 AFB는 고정이다
P만 이동시키면 되는데
직선AF와 평행한 접선과의 교점이 P0라는 것은 기출 아이디어를 통해 배웠던것
그럼 마지막 2루트6은 뭔지 생각해보면 이는 장축의 길이고
P0F'은 A를 지나는 선분이어서 타원의 정의를 만족하는 상황이라 할 수 있다
이를 이용해서 식 하나를 더 찾으면 P0에서의 접선의 기울기와 선분 P0F의 기울기가 절댓값이 같다는 사실을 이용해볼 수 있겠다
나머지는 두 식이 나왔으니 연립
29번
OF = OP임을 보자마자 직각삼각형을 떠올리자 역시 기출에 나왔던 아이디어다
그 뒤엔 길이 비가 나와있으니 표시를 하고 쌍곡선의 정의를 적용하면 삼각형의 모든 길이비를 나타낼 수 있다
피타고라스를 사용하면 한 문자로 통일되고 선분F'Q가 원의 지름이라는 사실을 이용하면 a마저 확정되므로 끝
30번
일단 그림 자체는 간단해보이나 상황은 복잡해보인다
우선 G는 움직이는 선분 위에 존재하는 동점이다
박스안을 읽어보면
G는 동점이라 불명확하지만 AC는 명확한 상황이다
따라서 AC의 중점인 M을 특정지을 수 있다
문제상황은 지금부터다
G의 자취를 알아야 M과의 거리를 생각해볼 수 있다
정확한 위치는 모르나 경계는 생각해볼 수 있다
B를 지나는 D를 지나면서 CFE가 60도인 선분 두개를 그려보면 이는 G의 시작과 끝이 존재하는 선분이다
즉 G의 자취를 파란선으로 그려볼 수 있다
즉 M과의 거리를 미지수로 표현할 수 있다
최대 최소의 위치가 나왔다 그러면... 길이비는 전부 표시된다
알파값만 구하면 해결된다
8루트3과 엮어볼려면 이의 절반이 몇 알파인지를 생각해보는것이 좋아보인다
직사각형의 세로 길이는 G2M의 6배 즉 6알파이다
즉 2알파인 부분에서 직각삼각형을 이용하면
4루트3과 8루트3/3알파가 같다는 사실을 알 수 있다
알파값을 알았으니 나머진 계산
요약
28번
타원의 방정식을 확정짓고 좌표대입
접선의 방정식 구하기
문제 조건이 나타내는 상황 파악
30번
동점의 자취를 파악하는 것이 우선
처음과 끝을 먼저 생각하자
키는 3등분 점이라는 것
즉 선분G2M이 선분AB와 6배 차이라는 것을 알 수 있다
선수를 빼앗겼다
0 XDK (+10,000)
-
5,000
-
5,000
-
공부하자
-
수험생 느그들이 학벌과 수험판에서 몸비틀며 뭔짓을 해봐야 586 아파트 기보유자의...
-
https://www.donga.com/news/Society/article/all/...
-
뭐 시켜먹지 14
제육도 먹고싶고 돈가스도먹고싶고 뜨끈한 국물도 댕겨
-
5모보고 나니 느낀건데 14 15 21정도의 문제를 풀 순 있는데 한눈에 안들어와서...
-
잘래 3
-
https://www.kci.go.kr/kciportal/ci/sereArticleS...
-
이 레어 너무 싫어요
-
221122 9
수학 교육청 2등급인데 이거 맞춤 칭찬해주세요
-
사설 컨텐츠(이감)vs교육청 국어 기출 하면 걍 이감하다가 자료 부족할 때나 교육청...
-
6번 - 각도 범위 안봄 레전드 능지이슈 30번 - 6 aa bb 나열을 잘못계산함...
-
과제밀려서 분량조절 실패 단과 있어서 오늘은 여기까지
-
지금 시작한거 자이 중등 독해력 기르기 문학,독서(배송중) 수특 문학,독서 읽고...
-
노력마저 재능이고 노력해서 얻은 학벌은 무쓸모에 존잘존예 금수저로 태어나야 인생 쉬워지는게 맞으면 10
아무것도 안하고 무기력하게 살거임? 전부터 느끼는건데 자신의 의지력과 용기가 부족한...
-
10년전 페이커 뜨던 시절엔 의미가 있었음 그땐 그 시장 성장기고 성숙한 시장이...
-
3학년인데 아직도 대학은 술먹으러감
-
초코릿의 정체는 11
4시에 당 떨어지는 건 과학인가 이제 초콜릿을 까보겠오 쓱싹- ㄷㄱㄷㄱ 정답은 랏코...
-
좋은 대학 나와봤자 쓸모 없다-> 대학이 좋아도 내가 능력있어야한다 (O) ->...
-
책사러왔는데 둘다있어서 노베 먼저살까 고민중이긴해요 참고로 국어 5등급입니다.
-
나도 모르는 상처가 ㅈㄴ 많지?
-
학벌 필요한 이유 14
거울을 보자 앞에 보이는 생명체의 얼굴로 돈을 벌 수 있을 거 같으면 공부 안 해도 됨
-
올해 3모 22번 미불+미불인 함수 미출제요소 맞음? 미적분에 절댓값함수에서...
-
건장한 여고생장임 잘먹는편 고기제외
-
에휴 내인생아 3
-
남의 노력을 폄하하먼서 현실적인 조언을 한다고 뿌듯해하는 인간들이 많음
-
살기는 편하지만 편한만큼 추해지는 마인드
-
내 자신이 1
항상 실망스럽다
-
뭘해도 재미가 없어
-
공통 11-14 4
얘네 연습하려면 뭐풀어야하나요? 고 2 때는 킬러빼고 다맞췄는데 고3 들어와서...
-
오르비 복귀 9
반갑읍니다
-
첫째로 와꾸 >> 학벌인걸 결혼적령기 놈년들한테 다 퍼져버렸고 둘째로 저출산때문에...
-
강의 존나게 안 올려서 공부 안하는 나같은 사람들이 자기위로하기 좋음 저 대단한...
-
홍준표 "김문수 캠프 상임선대위원장 안한다…내일 미국 출국" 3
[서울=뉴시스] 정윤아 기자 = 홍준표 전 대구시장은 9일 자신이 김문수 국민의힘...
-
대학가서 아싸는 아닌거같음 반대도 마찬가지고
-
지불 금액의 수 일반화 해봤는 데 도움이 되시길 바라요
-
현실: 1학년은 기본기 점검 및 고학점 폭격, 2학년부터 이론 전공 공부 주구장창,...
-
화가남 내가 계산 안하려고 기하하는데 딸깍 풀이 대령하라고
-
국어 비문학 고를 수 있다면 헤겔급 난이도 vs 검찰 공소장 4
비문학에 헤겔급 난이도 지문과 검찰 공소장 중 1개가 나온다면 어떤게 나오는게 더 쉬울까요?
-
2026 사회・문화 Headmaster N제 배포 22
안녕하세요? Headmaster입니다. 2026 사회・문화 Headmaster...
-
국어 연계 2
9월가서 해도 안늦나요? 기출에 집중하려고하는데
-
숭실대 뱃지를 제작하도록!!
-
5모 15번 2
계속 헷갈리는데, g(-x)는 gx를 y축대칭한 함수라고 생각할 수 있는데,...
-
저 중시경라인 전전다니는데 올해 8월입대하고 27수능 목표로 군수 ㄱㄴ? 8월입대면...
-
적정량 추천좀
-
차라리 숭훌로 살까? 10
님들 의견좀요
-
글 좀 올라오면 다시 오르비하고 공부를 좀 그렇게 해봐라 이놈아
-
영상으로 배경지식을 설명해준다는건가 이거 필요한거 맞음? 독서연계에 도움이 되나?...
-
허수라서 그럴 지 모르겠지만 강사인 저도 풀 때마다 이게 맞나 싶기도 한데 다들 잘...
-
수학이나 과탐시험지를 풀때 난도가 느껴지시나요??? 5
만점을 맞는 모의고사에서도 난도가 느껴지시나요??? 아 다른학생들한테 요번시험은 좀...
-
ㅎㅎㅎㅎ 3
3시반 수업인줄알았는데 3시수업이었음 18분 늦어서 지각받을거 결석받음 하
이렇게 보니까 런하고싶네;;
섹시해요
개추
항상 감사합니다
토요일에풀어보고읽겠습니다

잘먹겟슴니다