수학 잘하시는분들 이런거 머리로 스케치 하시나요
게시글 주소: https://orbi.kr/00072878939
수열이라 일단 써보면서 가나요?태도 배우고싶음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공간벡터 빼고 똑같은건가요?
-
맞팔할사람ㅁ 12
있으려나
-
폰에 sns랑 다른 앱들 다 지웠거든 ㅠ
-
자러감뇨 1
-
자러갈게 2
이바
-
5시 기상 목표 8
뱃팅 받아요 기상 실패시 1.5배 환급
-
오르비나 할걸 0
ㅇㅈ도 못보고
-
무슨 취미가 기벡문제푸는게 취미야
-
내일은 가야해
-
사문정법 질문받는다 11
정법 작수 ㅈ망해서 사실 질문 못받는다 걍 하지마라 이 ㅂㅅ 과목은 ㅇㅇ
-
아
-
아니 실화냐 7
어깨가 뭔가 불편해서 봤더니 뭔 뿔이 달려있노
-
전 6
-
킬캠 곧 나오네 5
침이 질질....
-
96~99 기만자니 뀨대나 메디컬로 꺼지면 됨 ㅡㅡㅡㅡㅡ올1컷ㅡㅡㅡㅡㅡ 95 연고공...
-
오랜만에 무물보 9
안받겟읍니다
-
4등급 재능 없는 것임뇨?
-
머리 깨지면서 푸는 문제를 스킬 한 번으로 풀어버리니 과탐은 ㄹㅇ 정상화가 필요했음
-
기만 3
동테보다 금테에 가까워짐 ㅎ
-
캬
-
오늘먹은거 9
포키 커피두잔 김치찌개
-
좋은 현상이군
-
ㄸㅊㄹㄱ 9
ㅇㄴ ㅈㅈ ㅇㄹㅂㅇㄷ
-
시대 6월례 수학vs9덮 수학 뭐가더 어렵나요? 보정컷은 둘다 60후반이던데 ...
-
제발제발학교늦기싫어제발
-
잘자쇼
-
와 팔로워 쭉 빠졌네 쩝..
-
나도 요즘 방구뀌는 법 연구중인데 이게 진짜 사람마다 편차가 개큼
-
감동이야
-
우우....
-
무보정/보정컷 나오는것일까용
-
저도보라눈해보고싶어요 26
흑흑
-
아시는분 ~?
-
재빠른취침 14
바쁜하루엿다 모두 잘 마무리하고 좋은 꿈 꾸시기를
-
떨어진 자존감 여기서 다 회복합니다 고맙습니다
-
본인은 그 학우가 나르시시스트인걸 인지를 몬하는거같음 계속 상처만 받고 있음 좀...
-
보ㅊ 람머스가 뭔지 다들 암?
-
진짜임....?
-
이왜진 13
-
외국에서 학교를 다니다가 고3 중간에 한국에 들어와서 남들보다 늦게 공부를 시작해서...
-
연애상담해주셈 7
기영이 숯불치킨 먹고싶은데 어떻게하지
-
난 자러갈게 4
쪽지는 못 받아
-
셤끗나면 할거 4
카페인 과섭치 안하기 술 퍼마시기
-
ㅇㅈ이었던것임 10
봤으면댓글좀
-
생윤 사문만 하루쟁일 2일동안
-
걍 말장난같은 지엽이 킬러임? 작수 4번 걍 개념형같은데 오답률 높던데 그런 문제가...
-
사문 고2때부터 겨울방학까지 개념+기출 2회독했는데 도표통계가 걍…안됨 도표는...
-
평가원이 낚는 포인트가 정해져있는데 그게 기출에 반복되는 부분이 많음 간혹가다가...
문자로 쓴 후 안 되면
직접대입해서 관찰
수열파트는 항상 이렇게함
문자로 둔다는게 일반항처럼 미지수 설정 말하시는건가
답 7인가요
암산뭐임
땡땡
24인가
머리로 하니까 잘 안되넹
맞음 근데 머리로 어케함 시팔??
24?
나조건 해석한 뒤에는 걍 귀납적추론때림

아니..진짜 뭐임 벽이다 벽정보가 많은 항부터 출발하는 게 맞는데
얜 딱히 가 조건으로 만들어낼게 없어보이니
나 조건 보고 a_1 k로 임의 지정하기 ㅋㅋ
지리네요..
이창무 쌤 심화특강도 한번 들어보셔요ㅋㅋ
수열푸는거보면 지림 ㅋㅋ
전 그정도 레벨 하지도 못할듯 ㅋㅋㅋㅋ
진짜 이런건 그냥 손도 못대겠네
(가)조건을 보고 4항부터 들어가서 역추적을 해볼까 하고 봤을 때 부호땜에 굉장히 귀찮아질거라는 게 예감이 됨+합과 항의 관계가 매우 특수
-> 정추적으로 규칙 파악
(가) (나)를 만족하려면
-32 16 8 4 2 1 1/2 ••••••
-32 -16 -8 -4 -2 -1 -1/2 ••••••
이런 느낌인가
a4+ a6 보고 4+1 생각남
암산 불가능하진 않은 듯요
24?
그냥 읽고 아 점점 작아져야지 절댓값을 만족하겠네
생각하고 풂요

부럽다sn=an or sn=-an sn=0이 아니니까 n>=2에선 2sn=sn-1이겠구나하고 쓰윽 풀것같네요
(나)보고 a[1] < 0, n ≥ 2에선 a[n]이 공비 1/2인 등비급수인 거 알아챈 다음에
(가)보고 a[4] = 4, a[6] = 1 박은 뒤 |a[1] + a[3]| = |(-32) + 8| = 24 이렇게 풀은 듯

지립니다이진법 떠오름
뭔가 1 -0.5 -0.25.... 넣고 싶게 생겼음
배율 조정하고

벽이다 벽an sn 같이 주어졌고 sn을 an에 대해 나타내자니 나 조건의 절댓값이 거슬림->an+1 을 sn+1 - sn 으로 나타내서 풀되, an에 대해 주어진 모든 조건들을 sn에 대해 바꿔서 풀면 끝
암산 24
x축 그어놓고 a1부터 어디쯤 위치해야 야무질지 대가리 열심히 굴리면됨
걍 |S[n]|=|an[]|=|S[n]-S[n-1]| 인데 S[n-1]=/0이니 S[n]=/S[n-1] 이므로 서로 부호 다르다는걸 이용해서 식계산할듯
윗분들보면 고능하게 잘 푸시는데
그냥 정석적으로 an=sn-sn-1로 바꾸고 규칙파악한다음
a4혹은 a6를 미지수로 잡는다 해서 가 조건을 풀 수 있는게 아니라는걸 파악하고 a1을 미지수로 잡아야겠다 생각하고 계산몇번하면 해결 할 수 있을 듯요
1.Sn an관계식섞여있을땐
an을 Sn-Sn-1로 바꾸는게 유리하다
2.주어진 항 간 관계식에서 어느하나를 미지수로 잡아 해결할 수 있는 지 확인 -> 안되면 정추적/역추적 방향 결정하기
이정도로 생각하시면 좋지 않을까요..?
저도 그리 잘하는편은 아니라..ㅎㅎ
감사합니다!
문제 좋네요
배울점이 있는 문제인듯
뒷북해설 해드리자면
1. 구하는 값을 본다 -> 수열의 특정항 -> 수열의 정의가 궁금하다
2. 조건을 보니 (가)조건이 '특수'한 트리거고 (나)조건이 수열의 '일반'적 정의이다. (나)를 해석하고 (가)를 (나)에 먹이는 방향으로 잡는다
3. (나)조건 해석을 시도한다. 뭔가가 같지 않다는 조건과 뭔가가 같다는 조건이 있다. 수능 문제는 하나의 정답을 구해야 한다. 그렇기에 등식이 중요하다. 등호가 없는 부등호나 같지않다의 경우는 실수의 '연속적인' 후보들 중에서 딱 하나의 답을 특정해주지 못한다. 따라서 '이산적인' 케이스를 배제하는 근거가 되는 것이 유일한 역할이다. 그렇기에 등호가 없는 부등호가 부등식이 나오는 경우 '케이스'에 염두를 둔다.
그러고 보니 오른쪽 등식에 절댓값이 있다. 절댓값이 있는 경우 취해야 할 몇가지 필연적인 태도들 중 하나는 케이스를 나누는 것이다. 같지않다 조건이 뭔가 케이스를 지워주지 않을까 하는 생각을 갖고 절댓값 조건을 바라볼 수 있다.
그리고 Sn과 an의 관계식이 있는데, 웬만하면 둘 중 하나로 통일시키는 것이 좋다. 우변을 Sn–Sn-1로 바꾸고 싶다. 그 전에, n=1의 경우 아무런 정보를 주지 못하므로 등식의 성립범위를 n>=2로 제한해도 동치이다. 그리고 케이스를 나누면, n>=2에 대해 Sn-1=0 혹은 Sn=1/2Sn-1인데, 전자의 경우 왼쪽의 같지않다 조건에 의해 깔끔하게 지워진다. 분류기준을 놓치지 않는 상태로, Sn이 등비수열이니 귀납적 정의를 일반항으로 바꿀 수 있고, Sn의 일반적 정의를 알고 있으니 an의 일반항도 구할 수 있다.
4. 이제 해석한 정보에 트리거 역할인 (가)를 집어넣으면 모든 항이 결정되고 구해야 하는 값도 구할 수 있음
뒷북해설이라 작위적이긴 한데 제가 강사입장이라면 이렇게 해설했을듯
자세한 풀이 감사합니다 다시 풀어볼게요 ㅎㅎ