[칼럼] 코사인법칙과 싸우는 남자
게시글 주소: https://orbi.kr/00072869879
어려운 문제는 아니지만
귀찮음이 많았던 24 수능 13번 문제
정석대로 푸는 방법은 각 ADC에 대한 sin 값을 알아내기 위해 AC의 길이가 필요하니까 제2코사인법칙 써서 어쩌고 저쩌고 열심히 푸는 건데...
이런 생각을 한번 해볼 수 있지 않을까요?
딱 보고 감이 잘 안 오는 분도 계실 수 있는데
부연 설명을 덧붙이자면
SAS 합동에서 A가 왜 사잇각이어야만 합동이 되는지 생각해보신 적 있으신가요?
다른 각도 둘이나 있는데 왜 하필?
그걸 알아보기 위해서 AB=5, BC=3, 각 BAC=30도인 삼각형 ABC를 한번 생각해봅시다.
먼저 AB=5, BC=3이라는 상황은
위의 그림과 같이 길이가 5인 선분 AB와 그 선분의 한 끝점 B에서 반지름이 3인 원을 그리고 그 원 위의 한 점을 C라고 하는 상황과 같습니다.
그러면 이 상황에서 각 BAC의 크기가 30도라 하면
A에서 선분 AB와 이루는 각의 크기가 30도인 반직선을 그어서 만나는 점을 C라고 하면 되겠네요
그런데 여기서 문제가 발생합니다.
저렇게 반직선을 그어서 원과의 교점을 찾으면 교점이 하나일 수도 있지만
그림과 같이 둘 일수도, 없을 수도 있기 때문입니다.
그럼 이렇게 둘인 상황에서 점 C를 확정할 수 있을까요?
추가적인 조건이 주어지지 않는 이상 없습니다
이렇게 사잇각이 아닌 상황에서는 삼각형이 하나로 결정되지 않을 수 있기 때문에 반드시 SAS 합동에서 A는 사잇각이어야만 합니다.
그런데 문제의 상황에서는 어떤 일이 일어나는가 하면
기준으로 잡는 선분 AB의 길이가 3인데 반해, 원의 반지름으로 삼을 BC의 길이가 AB의 길이보다 큽니다
이런 상황에서 AB와 이루는 각의 크기가 60도이고, A를 지나는 반직선을 그어도 원과 반직선이 만나는 교점은 단 하나밖에 존재하지 않게 됩니다.
반직선이 아닌 직선을 그으면야 당연히 교점이 두 개 생기겠지만
이 경우는 각 BAC가 60도가 아닌, 120도가 되기 때문에 당연히 문제의 상황을 만족하지 못합니다.
이처럼 사잇각이 아닌 각이 주어지더라도 문제의 상황에 따라서 점이 단 하나만 결정되는 경우를 잘 이용하면
이렇게 계산을 상당히 간략화할 수 있습니다.
이제 남은 건 계산 뿐...
결론)
나는
코사인법칙이
싫어요
개추는 언제나 힘이 됩니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1단원 -> 문학이 주로 무슨 내용을 다루는가 3단원 -> 1단원에서 다룬 내용을...
-
ㅇㅇ
-
정답은 김치찜이였습니다 11
저 그런사람 아닙니다
-
왜 일반화되는가 1
AG가 아니더라도 cos 제곱합은 2임 x,y,z축에 대해서 어떤 직선이 이루는...
-
당분간 질받글 안올릴 예정이라 쓰려면 지금 이 글 작성시점 12시간 이내의 질문만 받을 생각
-
ㄹㅇ 김치녀 먹은게 드립이아니었냐
-
픽고 성훈 승희 4
승희 성격 ptsd ㅈㄴ온다 하..픽고를 보는게 아니였어
-
삼김 괜히먹었다 1
소화가안됨
-
힌트:김치가 들어감
-
연애보단 결혼하고싶음 12
아이 10명 낳아서 행복하게 살고싶다
-
24수능은 난이도 꽤 있는거 같던데 이정도면 ㄱㅊ아요..? 그래도 화작에 15분은...
-
하나 배웠다 죽은위인 나오면 그분 뼛가루 아니었나요 시전하면 됨 ㅇㅇ 이거 ㄹㅇ 창의적임
-
킬캠 오티떴네 2
오티 재밌음 ㅋㅋㅋ 별별 얘기 많이하네
-
아뭐야 센츄 2
연동계정이면 기본정보 이름으로 바꿔야 하는구나 한달 어케 기다려
-
자격증 시험 수준이면 어카냐 교재 본다고 풀 수 있는 정도가 아니잖아
-
조합 nCr = n!/((n-r)!*r!)에 대해, 이라 할 때, f(n)=2^n,...
-
어싸 70문제 풀었음
-
하 엄마 잔소리 그만해 13
내가알아서할게
-
본인 역삼각형 등짝 . 두툼한 팔뚝. 둘중 하나 이상 해당하면 쪽지좀
-
나랑 뽀뽀할사람 9
입술 임대해드립니다. 가져다 쓰십시오
-
확통 의대?? 18
언매 확통 생지로 만점 받으면 메디컬(의치한약) 가능한가요
-
진짜네
-
하
-
없나 3.8 동의한 지역인재 드가자잇
-
문학 기출적용편은 데이가 안나와있길래.. 하루에 몇지문씩 하는게 좋을까요? 독서는...
-
다른 점이 뭔가요? 김승리 듣고 김승리 방법 적용시켜보려고 8개년 기출 샀는데 다들...
-
사륜안이라는거 5
좀 야한거같음..
-
커리어하이라 빨리 얻고싶다 확통런 화학 지구 치대 피램 생명 화1 언매 물2 사문...
-
진짜 나는.. 국어를 진짜 그래도 좀 친다고 생각했음..남들보다 조금은 하는편이...
-
올해 최악의 칼럼이 될 예정
-
수2 샹련이 내 발목을 잡는구나 넌 내일부터 좀 맞자
-
뭔 내가 불법 사이트를 보는 것도 아니고 나무위키에서 성인 웹툰 광고가 저따구로...
-
2026학년도 나락덕후 세미파이널 모의고사 출제를 위해 2025학년도 수능 세계사를...
-
쉽지않네 칼럼대회 글을 오랫동안 유지시키기 위해 저 글은 삭제함
-
대학생들이 이러면서 시험 시작 며칠전에서 직전까지 똥줄이탈때 수험생들은 매일이 이런...
-
문제에 벽느껴짐 5
231122풀다가 벽느낌 어캐풀지도 감이 안잡혔는데 해강도 대가리 깨지며 이해함
-
진심남편. 2
진심남편. 내남편. 또 내 남편. 내 남편이 맞나요? 내 남편이 맞아요.
-
모든걸 다 대변해버리면 완전 똥쟁이임
-
감사해 2
널 만나게 된 기적에
-
초비상
-
문제 안풀고 바로 답지 외우기
-
내일 어쩌면 상무이사급들 앞에서 망신 겸 쫓겨날것 같은데... 그 스트레스 풀겸...
-
뭐가 정배임요?
-
목욕하고 싶은데 0
목욕하고 나오면 땀범벅 되어있을까봐 못 하겄네
-
독서만 9틀입갤 뭐노 70점입갤 갠적으로 3모보다 훨씬어렵
-
작년 실모중에 1컷 80~84정도 될법한거 뭐있나요 2
수학이요! 히카는 다 풀어서 제외
-
방학때 수1,수2,확통 시발점이랑 쎈 1회독 하고 개학한 다음에 뉴런은 너무 어려울...
-
짜장하나배달 1
괜찮겠

저런 계산덩어리 코사인법칙말고진짜 중학도형 많이 쓰는 코사인법칙이 좋아요..
접현각 닮음 합동 원주각 다 나오는거
그게 계산을 훨씬 덜 하게 되긴 하죠
어..그러니까 기왕 특수각 준 거 수선의 발 뻗으면 제2코사인을 안 쓸 수 있다는거죠?
굳이 특수각이 아니어도 성립은 합니다
코사인법칙이 삼각형에서 수선의 발 뻗어서 나온 사실을 정리한 거니까 사실 같은 거 아닐까 싶어요
코사인법칙(공식으로 정리됨) vs 그리스인처럼 풀기 ㅋㅋㅋ
그래도 무작정 숫자 공식에 때려 넣는 것보단 빠르니 ㅎㅎ

숫자편할땐 원론적으로 가는게 더 빠를때가많더라고요공식 귀찮아요

코싸남 ㄷㄷ;;;
본인이 제1코사인법칙이 교육과정이었던 울트라레오면 개1추 ㅋㅋ
무의식적으로 제2코사인법칙과 싸우는 남자라고 적었
근데 걍 코사인법칙 쓰는게 빠르고 편할듯
코제2 항상 각이 잘 안보임 ㅜ