[칼럼] 코사인법칙과 싸우는 남자
게시글 주소: https://orbi.kr/00072869879
어려운 문제는 아니지만
귀찮음이 많았던 24 수능 13번 문제
정석대로 푸는 방법은 각 ADC에 대한 sin 값을 알아내기 위해 AC의 길이가 필요하니까 제2코사인법칙 써서 어쩌고 저쩌고 열심히 푸는 건데...
이런 생각을 한번 해볼 수 있지 않을까요?
딱 보고 감이 잘 안 오는 분도 계실 수 있는데
부연 설명을 덧붙이자면
SAS 합동에서 A가 왜 사잇각이어야만 합동이 되는지 생각해보신 적 있으신가요?
다른 각도 둘이나 있는데 왜 하필?
그걸 알아보기 위해서 AB=5, BC=3, 각 BAC=30도인 삼각형 ABC를 한번 생각해봅시다.
먼저 AB=5, BC=3이라는 상황은
위의 그림과 같이 길이가 5인 선분 AB와 그 선분의 한 끝점 B에서 반지름이 3인 원을 그리고 그 원 위의 한 점을 C라고 하는 상황과 같습니다.
그러면 이 상황에서 각 BAC의 크기가 30도라 하면
A에서 선분 AB와 이루는 각의 크기가 30도인 반직선을 그어서 만나는 점을 C라고 하면 되겠네요
그런데 여기서 문제가 발생합니다.
저렇게 반직선을 그어서 원과의 교점을 찾으면 교점이 하나일 수도 있지만
그림과 같이 둘 일수도, 없을 수도 있기 때문입니다.
그럼 이렇게 둘인 상황에서 점 C를 확정할 수 있을까요?
추가적인 조건이 주어지지 않는 이상 없습니다
이렇게 사잇각이 아닌 상황에서는 삼각형이 하나로 결정되지 않을 수 있기 때문에 반드시 SAS 합동에서 A는 사잇각이어야만 합니다.
그런데 문제의 상황에서는 어떤 일이 일어나는가 하면
기준으로 잡는 선분 AB의 길이가 3인데 반해, 원의 반지름으로 삼을 BC의 길이가 AB의 길이보다 큽니다
이런 상황에서 AB와 이루는 각의 크기가 60도이고, A를 지나는 반직선을 그어도 원과 반직선이 만나는 교점은 단 하나밖에 존재하지 않게 됩니다.
반직선이 아닌 직선을 그으면야 당연히 교점이 두 개 생기겠지만
이 경우는 각 BAC가 60도가 아닌, 120도가 되기 때문에 당연히 문제의 상황을 만족하지 못합니다.
이처럼 사잇각이 아닌 각이 주어지더라도 문제의 상황에 따라서 점이 단 하나만 결정되는 경우를 잘 이용하면
이렇게 계산을 상당히 간략화할 수 있습니다.
이제 남은 건 계산 뿐...
결론)
나는
코사인법칙이
싫어요
개추는 언제나 힘이 됩니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 모룸 #89년생
-
곧 앞자리가 바뀌는데 국수영탐탐 어디까지 되어잇어야하나여
-
나 취미 오르비밖에 없어 애들아 미안
-
늦게 시작해서 주말에 하루씩 통으로 빼서 인강으로 개념 듣고 기출 풀고 이렇게...
-
으으윽
-
존나 어지러움 거의 스토커임 그것도 단체로 신상캐고 성희롱하고.. 존나 역함
-
생윤똥똥꾼의 비호감 원인은
-
#노엘을국회로 2
3대 가업 SHIT 죽겠죠~
-
그.. 학기초에 몇번 기회 있었던 걸 개인사정을 이유로 거절을 해버렸는데 괜히 궁금해서요
-
님들 잡담태그씀? 11
저는 맨날 독학생 하나만 누르는데 ㅎㅎ;
-
안녕히계세요 5
똑같은 닉으로 대학 합격후 돌아올께요! 연의 26으로
-
반응 좋으니까 찐따 신남 ㅡ
-
생윤똥똥꾼은
-
저는 호감인가요 22
호감이길 바래봅니다
-
인증 댓글 재밌는 짤 14
인증은 해로운 새입니다
-
ㅇㅈ 8
-
생윤똥싸꾼이 개 쓰잘대기 없는 만년필 명품글 올릴 때 팔취하는 심정을 알게됨
-
남들과 계속 비교하게되네 나는 왜 못할까 나는 내가 할 수 있는 최대의 것을 했는데
-
미적분 시작 2
반수생인데 지금 미적 다시 시작해도 안 늦음? 수1 수2는 어느정도 되있고 작수...
-
나 몸이 뜨거워져
-
개폐인 ㅇㅈ 4
엄마랑 밥먹는데 싸가지없이 폰하는 모습임
-
ㅇㅈ 16
가린건 증사
-
광역어그로 인증되던데
-
에피 한번 달아보자잇
-
성형외과 달려간다 수능 끝나면 다 죽여버린다
-
에휴 시발
-
우왓
-
정신승리함
-
오늘은 안함 ㅈㅈ
-
내 저격글 내가 가서 미안하다고 하니까 삭제하던데 마음 여려서는
-
남자친구는 대학생이고 저는 재수생이에요.. 12월에 남자친구가 기다려준다고 해서...
-
깨알 맞팔구 8
뻘글 많이써요
-
비갤 인증 반응 부류 정리.....arabozagoo 8
1.존잘,존예 보고 발작하고 물어뜯는 부류 열등감에 개발작 2.티어 매기는 놈...
-
어이 오비서 5
무슨 메타냐
-
아 티어 올려야되는데
-
성대모사 좀 하고싶습니다
-
직업 전망 따질거면 10년 20년째 전망 원툴 생공, 수의대 가라 4
진짜 진심임.
-
존잘 존예 다모였냐???
-
난 사진 못믿음 16
다 부산 오셈 한명씩 직접 얼굴 확인해야겠음
-
동사 개념 5
이다지 백건아 뭐가 낫나요?
-
검증돤사안

저런 계산덩어리 코사인법칙말고진짜 중학도형 많이 쓰는 코사인법칙이 좋아요..
접현각 닮음 합동 원주각 다 나오는거
그게 계산을 훨씬 덜 하게 되긴 하죠
어..그러니까 기왕 특수각 준 거 수선의 발 뻗으면 제2코사인을 안 쓸 수 있다는거죠?
굳이 특수각이 아니어도 성립은 합니다
코사인법칙이 삼각형에서 수선의 발 뻗어서 나온 사실을 정리한 거니까 사실 같은 거 아닐까 싶어요
코사인법칙(공식으로 정리됨) vs 그리스인처럼 풀기 ㅋㅋㅋ
그래도 무작정 숫자 공식에 때려 넣는 것보단 빠르니 ㅎㅎ

숫자편할땐 원론적으로 가는게 더 빠를때가많더라고요공식 귀찮아요

코싸남 ㄷㄷ;;;
본인이 제1코사인법칙이 교육과정이었던 울트라레오면 개1추 ㅋㅋ
무의식적으로 제2코사인법칙과 싸우는 남자라고 적었
근데 걍 코사인법칙 쓰는게 빠르고 편할듯
코제2 항상 각이 잘 안보임 ㅜ