다인자 자손개수 구하는 법
게시글 주소: https://orbi.kr/00072819794
이 방법은 대성학원 정석준T의 방법임을 밝힙니다.
다인자 이형을 생각하자.
예를들어 ABD/abd는 (3)짜리고 AbD/aBd는 (1)짜리, Fg/fG는 (0)=동형
이정도는 쉽게 이해할 것이다.
이제 다음과 같은 사람의 경우
ABD/abd ef/EF G/h H/h
(3), (2), (1), (1)이라는 사실을 쉽게 알 수 있다.
이 때 다인자 표현형 가짓수는 min(파스칼 길이, 약수의 수)를 따른다. 예외 없이
말이 어려워서 그렇지 사실 쉽다
파스칼 길이: (Σ이형)+1
약수의 수: [(1)의 개수 + 1]*[(2)의 개수 + 1]*[(3)의 개수 + 1]… -> 계산 방법이 약수의 수 계산법과 비슷
이를테면
P: ABD/abd = (3), Ef/ef = (1)
Q: AbD/aBd = (2), eF/ef = (1)
위의 예시는 파스칼 길이는 (3+2+1+1)+1=8, 약수의 수는 (2+1)*(1+1)*(1+1)=12
따라서 다인자 가짓수는 8종
대표적인 예외 케이스
ABD/abd x ABD/abd를 분석해보면
(3), (3)이므로 파스칼 길이는 7, 위의 약수의 개수 계산 결과는 3((3)짜리만 2개 있으므로)
따라서 3종
이 방법을 쓰면 예외나 확률 암기를 1도 안하고 다인자 표현형 가짓수를 구할수있다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뇌절이 무슨 뜻인가? 요즘 학생들은 쓰잘데기 없는 신조어를 너무 많이 사용하는 것 같다. 5
이 계정의 전 주인 또한 신조어 중독으로 사료되는 바이다.
-
진심이 느껴지는 절규이국종 교수의 말은 단순한 불만이 아니라, 오랜 시간 싸우다...
-
생윤런 5
작수 국어3등급따린데 생윤 가도 백분위 99 맞을 수 있을까요?
-
안해도 되는 방법이 있나
-
이거가 맞다고 하면 정부가 문제거 아니라 개원가중심의 의협이 개쓰레기같은데 왜...
-
서울대 배지를 달고 있는 사람이 그저 비꼬기밖에 하지 못하는구나. 4
서울대학생중에 정상적인 사람은 인터넷 코뮤니티에 상주하고 있지 않을 것이므로 사실...
-
평가원 #~#
-
수1 개때잡, 시발점 이랑 수분감 step0은 다 풀었습니다 그 다음으로 어삼쉬사...
-
말이 쎄네 13
헤카림 누가 키웠냐
-
20대 남자들이 왜 정치권에서 발언권을 얻지 못하는지 오르비가 잘 보여준다고 생각한다. 8
필자가 작성한 글마다 논리적인 반박을 하기는 커녕 “그럼 납득하지 마세요.”...
-
소요시간 85min 난이도 수학1 - 6/10 수학2 - 6.5/10 확통 -...
-
틀린말은 아니지만 표현이 센 듯
-
다시 들어오는거 맞나요?
-
못 풀겠음...
-
이국종이 아무리 그동안 아주대병원과 정부로부터 박해당해왔다고 하더라도 6
국민훈장 무궁화장 수훈자이자 2019년 한국갤럽 선정 한국인이 존경하는 인물...
-
몇년전부터 좋게좋게 말하면서 의료계 고질적인 문제점들 꼬집어 왔을때는 듣지도 않거나...
-
기말로 어디까지 커버함?
-
당분간 오르비 접습니다 며칠뒤에봐요
-
2024 6월 모평 기능주의 지문입니다 4번에서 몸에 의한 지각을 주장하는 입장이...
-
6모치기 전에 3모, 5모 풀어보는거 어케 생각하세요들??
-
지금 폰트 적중 ㅋㅋ
-
맨날 중국집가면 뭐먹을지 고민인데 0.5인분씩 둘 다 주는거임 인기 많으ㄹ거깉은데...
-
평가원 미적 0
왜 없앤거에요? 사교육 이슈인가요… 그렇다고 확통을 어렵게 낼 것 같지는 않은데
-
학교에선 딱히 뭘 외울수도 없고 너무 머리아프기만하네 할것도 없고
-
글 원문 :...
-
1등급 of 1등급이네 ㅎ 4%의 4% 하하하하 0.16% ㄷㄷ
-
90분 96 받았음 21 틀림 근데 님들 30번 정석으로 어떻게 풀어요? a는...
-
걍 ㅈ같아서 나옴ㅋㅋㅋㅋㅋ 근데 대처가 조심들 합시다 하고 공지방송 하는거밖에 없음...
-
학교끝나고 집가서 먹어야된다고..
-
그걸 견지하고 말한건지 그냥 수사어구로 말한건진 몰라도 반일종족주의에서 나온 대표 주장으로 유명함
-
더 이상 진행한다면 이 과 침 공 해버릴 것
-
빨리 오너라~ 0
-
이거빼곤 다푸렀는데
-
문혐하지마오 10
화1화2 선택해서 분탕쳐버릴꺼야
-
은평,서대문에서 수학과외하시는분 있으신가요?
-
R.I.P 3
미적 기트남...
-
걍 ㅅㅂ 사설독서 이래야함?
-
언확생윤사문 어디까지 가나요
-
ㅅㅂ
-
내가 문과라 상처받음.
-
게임.오바
-
싸구려 사설도 저렇게는 안하는데
-
원래대로 돌아가지 않을까 싶기도 하고..
-
하나 해볼까
-
오르비언들은 4
매체기출도 적은데 여기서 사이트 기능 보면서 매체 체득하는거나 마찬가지 아닌가 완전 좋잖아
-
같은 문제 다른 선생님 해설 들으면 별로인가요? qna 게시판은 너무 답답한데

와우 신기하네요이게 선형대수 기반이라고 해요

오...생과맨 수강생이셨나보군요
좋은 방법 공유 감사합니다