[칼럼] 생1 다인자 기본기 1탄
게시글 주소: https://orbi.kr/00072819703
생명과학I에서 다인자 문제를 풀 때는 델타와 비율을 활용하면 편해요. 델타는 상동 염색체에 존재하는 대문자 수의 차를 의미해요. 7번 염색체에 AB/ab가 있고 8번 염색체에 D/d가 있다면 7번 염색체 델타는 Δ2이고 8번 염색체 델타는 Δ1이에요. 상동 염색체에 존재하는 대문자 수의 차가 0이라면 Δ0이라고 나타내도 좋고 표기하지 않아도 좋아요.
부모의 델타를 모두 모으면 아이가 태어날 때 나타날 수 있는 표현형 가짓수와 확률을 구할 수 있어요. P가 AB/ab D/d이고 Q가 AB/aB D/d이면 P는 Δ2 Δ1이고 Q는 Δ1 Δ1이므로 Δ2가 1개 있고 Δ1이 3개 있으니 Δ2 3Δ1과 같이 나타낼 수 있어요.
P와 Q 사이에서 아이가 태어날 때, 이 아이의 대문자 수로 가능한 값으로는 6, 5, 4, 3, 2, 1이 있으니 이 아이에게서 나타날 수 있는 표현형은 최대 6가지예요. 델타를 이용하면 대문자 수로 가능한 값이 무엇인지 구하지 않고 아래 공식을 이용하거나 비율 합성을 통해 표현형 가짓수를 구할 수 있어요.
일반적으로 (표현형 가짓수)=(모든 델타의 합)+1이에요. Δ2가 1개 있고 Δ1이 3개 있는 경우 2+1+1+1=5이므로 공식을 이용하면 표현형 가짓수는 6가지임을 알 수 있어요.
순수 다인자 유전에서 Δ1만 존재하거나, Δ2와 Δ1만 존재하는 경우에는 위의 공식이 항상 성립해요. 하지만 Δ2만 존재하거나 Δ3과 같이 더 큰 델타가 존재하는 경우에는 예외가 존재해요. Δ2만 존재하는 경우에는 아래와 같이 공식을 변형해서 적용하면 돼요. 최대 델타가 Δ3 이상인 경우에는 비율 합성을 통해 표현형 가짓수를 구하면 돼요.
Δ2만 존재하는 경우 (표현형 가짓수)=(모든 델타의 합)÷2+1이에요. P가 AB/ab D/D이고 Q가 AB/ab d/d이면 P와 Q는 각각 Δ2이므로 델타를 모으면 2Δ2와 같이 나타낼 수 있어요. 모든 델타의 합은 2+2=4이므로 공식을 이용하면 표현형 가짓수는 3가지임을 알 수 있어요. 확인해 보면 P와 Q 사이에서 아이가 태어날 때, 이 아이의 대문자 수로 가능한 값으로는 5, 3, 1이 있어요.
최대 델타가 Δ3 이상인 경우에는 공식이 성립할 때가 있고 그렇지 않을 때가 있어요. 최대 델타가 Δ3인 경우 Δ2와 Δ1이 모두 존재하거나 Δ1이 2개 이상 존재하면 공식이 성립하고 이외의 경우에는 공식이 성립하지 않아요. 최대 델타가 Δ4인 경우 Δ2와 Δ1이 모두 존재하거나 Δ1이 3개 이상 존재하면 공식이 성립하고 이외의 경우에는 공식이 성립하지 않아요. 최대 델타가 Δ3 이상인 경우 공식이 언제 성립하는지 외울 필요는 없고, 표현형 가짓수를 구할 때는 비율 합성을 하면 편해요.
0 XDK (+10)
-
10
-
밥 16
쩝쩝
-
간식 9
쩝쩝
-
???: 개정이고 뭐고 10
일단 저거 오기 전에 끝내고 싶은 눈물의 수험생들 좋아요 눌러주세용 26 27 성불 기원합니당
-
예시문항 쓱 봤는데 13
22수능 리턴을 싫어하는 건가 근데 26 27은 어려울 것 같은데
-
하 생윤 98정도만 맞으면 좋겠는데 그게 지구 1컷보다 훨 쉽다고 ㄹㅇ..?
-
급식실에서 여러 명이 앉을 수 있는 좌석에서 혼자 먹고 있다가 모르는 사람들이 옆에...
-
이 유형 시험지가 점수 젤 잘나온단 말이에요
-
미칠 영향이 없지않아 있긴한건가? 결국 평가원에서 낸거니까
-
카페에서 아아 사들고 학교 산책하고 있어
-
현 수1,수2,확통 + 행렬 인거죠?
-
고무고무노 6
칼바린
-
초월함수미적없으니까 무슨 고1시험지같네 ㅋㅋㅋㅋ
-
1. 폰트 바뀜 2. 장평 바뀐듯?(윗줄 뭔가 글씨가 너무 붙어있는 느낌) 3....
-
32세女 ‘불필요한’ 자궁 적출 수술하더니…“그건 실수, 실은 맹장암” 청천벽력 한 마디 7
난소암을 진단받아 자궁을 적출하는 대수술을 받았으나 뒤늦게 “암이 아니었다”는 말을...
-
진도 다 나가면 과외 선생님이랑 뭐했음? 그냥 문제만 풀리기엔 시간 아까울 듯 한데
-
케일리-해밀턴 정리도 나오나요? 이거써서 ㄱㄴㄷ푸는게 국밥유형중하나인데
일반적 공식 칼럼 써볼까요
이게 좀 재밌음

오 ㄱㄱㄱ 그런거 좋죠저 머리아파서 하나도 이해 못했어요

이런 거 몰라도 어차피 안 틀리는 분이시잖아요저 생명 언해요 ㅋㅎ

감사합니다!!!생1 고수분들 대단하다고 느껴요 개인적으로
좋은 글 감사합니다

그렇게 봐주시니 감사할 따름입니다!윽 물지러지만 생명러들을 위해 개추..

감사합니다!! 물지 파이팅~~
감사합니다~!