현수능의 고1 수학적 요소 [1편]
게시글 주소: https://orbi.kr/00072812017
현 수능에 있는 고1 수학적 요소에 대해 알아볼게요.
1. 완전제곱식
소소한 팁부터 시작하겠습니다.
완전제곱식을 잘 써먹으면 계산량을 줄일 수 있습니다.
단편적인 예시로,
이차함수와 직선이 접하는 상황은 대부분 미분을 할 필요가 없습니다.
교과서에서는 이런 문제를 미분하라고 시키지만 사실 그럴 필요가 없죠.
두 식을 빼서
이걸 만든 뒤에,
이렇게 결론내주면 됩니다.
판별식 쓰지말고,
두 완전제곱식의 꼴이 익숙하면 계산이 편하겠죠.
대체로는 계산을 깔끔하게 하기 위해 이렇게 딱 떨어지는 숫자를 줍니다.
만약 떨어지지 않는다면 판별식 쓰면 되는 것이구요.
한 발 더 나아가서
이 문제처럼
인 m을 구할 때에도,
이 꼴이 익숙하다면 계산 없이 m=-12를 도출할 수 있습니다.
사실 이건 외워야한다기보단, 고1 수학 계산 짬바에서 나오는 것 같습니다.
여기까진 말 그대로 소소한 팁이었구요
이제 본격적인 내용으로 가볼게요.
이 경우와 같이
이차함수와 이차함수가 접할 때도, 한쪽으로 몰아서 판별식 쓰면 됩니다.
당연히 완전제곱꼴로 읽어도 되는데, 이 경우에는 그게 잘 보이지 않죠.
핵심은, 점 잡고 미분할 필요 없습니다.
그렇게 힘들게 구한 결과나, 한쪽으로 몰아서 판별식 쓴 결과나
완전히 동일하게 나옵니다.
만약 두 계산 방식에서 다른 결과가 나온다면 그건 a,b가 완전히 정해져버린다는 소리인데
(왜냐면 식 두개, 문자 두개니까요)
말이 안 되죠.
보라색으로 표시해둔 부분이 제가 개인적으로 자주 하는 생각입니다.
문제를 생각 없이 풀다 보면
'어? 이게 왜 같은 결과가 나오지? 왜 항등식이 나오지?'
혹은
'지금 이걸 계산하는게 의미가 있나?'
와 같은 생각이 들 때가 있는데, 그때 보라색으로 쓴 생각을 해보세요.
그 계산이 의미있는 계산인지, 없는 계산인지 판단할 수 있습니다.
다음 내용으로 넘어갈게요.
혹시 근의 공식 유도 과정을 아시나요?
제가 여기서 공식 유도를 하면 너무 재미가 없으니까,
대충 컨셉만 알려드릴게요.
아이디어는 "억지로 완전제곱식을 만든다"입니다.
그러니까
이렇게 생긴 이차식에다가, 적절한 상수항을 더했다가 빼서 억지로 완전제곱식 하나를 만드는 겁니다.
그 결과를 정리한 게 근의 공식이에요.
저는 이것도 소소한 계산 팁으로 사용하는데,
때론 근공보다 이게 빠르더라구요. 보여드릴게요
이렇게 주어졌을 때,
이렇게 정리하는 겁니다.
근공의 결과가 아니라 과정을 쓰는거죠.
이처럼 적절한 상수를 더하는 아이디어가 실제 문제에서도 활용됩니다.
관련된 기출문제를 하나 보여드릴게요.
2023시행 6월 모의고사입니다.
저는 이 문제의 (가) 조건을 보자마자 양변에 1을 더했습니다.
그럼 왼쪽에 f(x)+1의 제곱이라는 완전제곱식이 나오니까요.
완전제곱식은 많은 정보를 포함하고 있습니다.
그 중 가장 결정적인 건 항상 0이상이다라는 점입니다.
왼쪽이 0이상이면 오른쪽도 0이상의 함숫값을 가지겠죠.
참고로 (나)를 풀면 f가 함숫값으로 -1을 적어도 한 번은 가진다는 결과가 나와요.
따로 확인하지 마시고 그냥 저 믿으면서(?) 따라오세요.
f가 -1인 순간이 있다면,
얘가 적어도 한 번은 0이 된다는 거죠. 그럼 (가)의 우변에 1을 더한
얘도 적어도 한 번은 0이 돼야 하며, 동시에 항상 0 이상이어야 합니다.
미분가능한 함수이므로 x축에 접한다는 소리죠.
여기서 또 한 번 센스를 발휘해서
얘가 x축에 접한다는 계산을 해주면, a와 b가 구해집니다.
그 계산도 좀 센스 있게 할 수 있는데, 댓글에 묻는 분이 있으면 써둘게요.
저말고도 이렇게 1을 더하면서 풀이를 시작하신 분들이 많이 있었는데,
사실 당시에 "1 더하기"가 작지만 논란 아닌 논란이 있었습니다.
뭐였냐면 1을 더하는게 너무 발상적이라는 겁니다.
그래서 그 대안으로 제시된 풀이가 근의 공식을 쓰는 것이었어요.
f를 문자처럼 생각해서 근의 공식을 쓰면, f(x)= ~~~ 가 나오니까요.
하지만 여러분은 이제 근의 공식의 유도 아이디어를 알았으니까, 이게 상당히 웃픈(?) 말이라는 걸 알 수 있겠죠.
1을 더하는거나 근의 공식을 쓰는거나 똑같은 겁니다. 근공은 1을 더하는 과정을 포함하고 있습니다.
아무튼 결론은 이 문제처럼, 우리는 적절하게 상수를 더하는 법도 사용할 수 있어야 합니다.
완전제곱식을 만들어서, 그 특징을 잘 이용할 수 있게끔 말입니다.
한편 또 다른 방식으로도 완전제곱식이 사용됩니다.
그건 사차함수의 공통접선을 구할 때입니다.
이런 사차함수의 공통접선(이중접선)을 구해야 하는 상황입니다.
이때 계산 없이,
y=2x-8이라고 알 수 있습니다.
그 이유는 두 식을 빼보면 알 수 있는데요,
x 제곱에 대한 완전제곱식이 되기 때문입니다.
이에 대해서는 이미 자세히 써둔 칼럼이 있습니다.
아래 링크를 누르면 넘어가집니다.
근데 글 거의 다 끝났으니까 끝까지 보고나서, (좋아요도 누르고 나서 ㅎㅎ) 넘어가세요.
2년전 글이네요.
지금 제가 성숙하단 뜻은 아니지만, 저 글이 다소 어릴 때 쓴거라 좀 싸가지가 없습니다.
감안하고 봐주시면 감사하겠습니다...ㅋㅋ ㅜ
아무튼
1. 완전제곱식은 이정도로 마치겠습니다.
다방면에서 완전제곱식이 사용된다고 요약할 수 있겠네요.
시작은 좀 가볍게 해봤습니다.
앞으로 고1 수학에 대해 할 얘기가 많은데
- 식변환 (수학 상에서 아이디어를 차용한)
- 평행이동의 활용
- 이차함수 감각과 대칭성
- 근의 분리
- 확대와 축소
등입니다.
곧 돌아오겠습니다
감사합니다
#무민
0 XDK (+5,030)
-
5,020
-
10
-
[단독] 민주당 “李 당선돼도 무죄 선고할 재판은 계속해도 된다" 1
‘재판 정지’ 법 개정안 처리하면서 무죄, 면소 등 선고하는 재판은 제외 李 당선...
-
1차 수능100 2차 내신+논술+면접 (수능0) 논술범위: 물화생지12 면접: 수학+물화생 택1
-
ㅈㄴ 낭만넘치네 0
500점 만점인거 같은데 문과 450점이 교대 연대생보다 수능점수 35점 높은...
-
얌디가 돌아왔나 3
흠
-
세지 총평: 고난도 문항 없음 / 수능이었으면 2컷 50, 그냥 퀄리티 좋은 내신...
-
수학이 이상해 더프풀때보다 머리아픈데 정상임?
-
ㅇㅋ? 미만잡
-
0을 넣지 못하다니.. 아
-
학벌 2
벌받기
-
예뻐지려고 양악수술하는 유형은 보통 둘 중 하나라고 생각합니다. 4
독한 X or 미친 X제가 부정교합 때문에 양악수술을 해 본 사람이라서요.
-
다른것도 중요해진게 많아서 학벌만 가지고는 다 안된다는게 맞는 말 아니냐.학벌은...
-
안경광학과 같은 과 들어가는거 어떰? 다비치안경 기준 개원비용 8~9억 정도에...
-
경제 아예 쌩노베(통합사회할때도 공부 제대로 안함)로 5모 23 -> 5모 오답...
-
작년에 물생하다가 개망해서 생명 사문 하고 있는데 지금은 조금 늦었나해서요 생명도...
-
두개이상 틀리면 2아니에요?
-
그냥 다리 6~8cm 정도 늘리는 수술인데.. 많이 위험한가? 성공 대 부작용 비가 어떻게됨?
-
비가많이옵니다.
-
92점 4
22 30 틀 22번 답 왜 59 아닌지 나를 빨리 납득시키셈 그래도 예상보단 잘 봤다..
-
나도역학눈풀하고싶다
-
ㅇㄴ 3학년한테 2학년 애가 유빈이 다들 쓴대! 이래서 친구가 검색해보니까 오르비...
-
작수 53254 제멀307 메디신13 3모 51242 5모 41312 지금대로...
-
학벌쓸모없긴함 1
내년부터쓸모있어짐 내가학벌이생길거라
-
막 마지막으로 ㄹ이 되는지 아닌지 헷갈리는 문제 킬러문제는 수능에서는 몇 문제 정도 나오나요?
-
22번 재밌는게 1
22예비 229평이후 수열에 그래프적용하는거 나왔을때는 애들이 그걸 쓰기...
-
원순열 풀이 팁 1
항상 기준점을 우선으로 생각하기 원으로된 탁자에 A라는 사람을 배치한 순간 A는...
-
성대 가고싶다는 생각을 올해초까지도 했던 내가 ㅂㅅ이지 0
5월에 이런 성적 받으면서 무슨 망상인지~
-
진짜 맨발키로 172는 넘어야함 사회가 너무 각박하고 불경기에 비관주의가 팽배하니까...
-
내가 왜 공부했는데 이정도 했으면 필요도 좀 있고 덕도 봐야지 ㅅㅂ ㅋㅋ 하여튼 심보들 고약해
-
딱 두 부류임 너무 잘나서 학벌로 득을 볼 수준이 아니거나 걍 병신이거나
-
5모 사문 4
14분 컷 50점인데 잘하는건가요
-
국어 95 수학 36 영어 64 사문 41 생윤 39 응응... 수학 노력하자
-
이거 어케끊냐 초엘리트들이 모여서 뭐하시는 건지 모르겠지만 재미따
-
현재 키 169고, 1년째 안 크고 있음. 병원에서는 5cm 정도 남았다는데, 내...
-
6월 편입이랑 반수반 중에 6월 편입이 커리큘럼 말곤 괜찮은거 같아서요 6월...
-
용기가 없다 10
그만 살 용기가 없다
-
5모 29번 2
방금 다 풀었고 30번은 시간 없어서 못 풀었는데 이거 제가 도입한 각 k가 6분의...
-
미적 29,30만 못풀어서 92 기대했는데 어김없이 22번 수열 틀려버림 ㅠㅠ 어째...
-
문법의 혁신 0
-
누가 이번에 국어 몇점이래 > 알빠임? 누가 이번에 수학 1등급이래 > 알빠임?...
-
비와ㅓㅅ ㅋㅋㅋ큐
-
항상 오픈형만 쓰고 너무 만족하는데 소리는 너무 잘 들려서 아쉬움……. 남들...
-
국어(화작) 과외생 고3 3모 5등급에서 5평 80점으로 오름! 3~4등급일 텐데...
-
학부만 나와서 뭘 알음 10
대학원 까지 가서 공부를 해봐야 이게 학문이구나를 자세히 알지 라고 한다네요
-
미적러라 확통 버리고 공통만 풀어봤음. 3점은 무난했음 14번: 4항 기준으로...
-
분탕도 확실히 의뱃이나 설뱃이 효과가 좋음. 분탕치려면 학벌 좋아야 되는 세상이거늘 쯧.
-
미적89 백분위 98뜸... 99.초중반 예상했는데.
-
...
-
누가 2개 가져간거야
개추
고1 수학 칼럼 좋다
개추

눈물을흘리며개추개추
개추

이야 개추오와 저 완전제곱식 계산 현우진쌤 보고 배웠는데 여기서도 보네용
https://orbi.kr/00064989284/%EA%B7%B8%EB]
그동안 올린 모든 칼럼은 여기서 확인하실 수 있습니다.
a와 b를 구하는 센스있는 계산이 궁금합니다요....
곧 그거가지고 제대로 칼럼 써서 올려볼게요!
ㅇㄷ
낭낭 ~
24년 6월 29번처럼 모양만 미적이고 99% 고1수학 문제가 나오기도 하는ㅋㅋㅋ
맛있어요