그래서 수식으로 바로 못가겠는데?(2024년 5월 시행 학평 22번)
게시글 주소: https://orbi.kr/00072783899
내가 항상 하는 말이
'한국어 발문' '수식' '그림, 그래프'로의 이행이 문제 푸는 과정임을 주장했는데
이를 처음 시켜보면
안타깝게도
본인이 어떤 상황인지 개략적으로 추정을 했음에도 수식으로 스위칭이 안되는 경우가 있다.
또는 수식으로 가는 것이 속도가 나지 않는 경우도 있어
실전에서 활용하기 어려운 경우도 있다.
이럴때에는 개략적인 그림으로 먼저 이해를 잡고
필요한 부분을 수식으로 뽑아가는 기법이 유효하다.
다음 예제로 보자
(가)를 읽고 우선 숨겨진 전제를 파악해야한다.
이거와
이 사실을 통해 g(x)의 양상이
얘는 안되고,
얘가 된다는 것을 알 수 있다.
식에 대한 인지도가 높아야 이렇게 해상도 높은 해석이 가능하다.
한국어 표현에서 수식으로 바로 넘어갈 수 없으면
그림을 중간다리 거쳐서 가능 방법을 사용하자.
이런 양상에서
개략적으로 보라색 부분이 g(x)라는 사실을 얻고 여기까지 이해가 가능하다.
이 추론까지 식으로 생각하는 것이 어렵다면, 식에서 그림에 대한
이미지를 긁어서 붙이고 이걸 식으로 바꿔서 해상도를 높이는 방식으로
문풀을 하자.
g(x)를 여기까지 뽑아내면 반은 왔다.
g(x)h(x)가 연속함수여야한다.
h(x)는 불연속점, x축과의 교점의 양상이 우선적으로 중요하므로 정리하면 다음과 같다.
(또한 g(x), h(x)가 불연속인 점에서 g(x)h(x)가 연속이게 되기 위해서는
a=1/2일 수밖에 없다는 사실을 알 수 있다.)
따라서 다음과 같은 생각을 할 수 있다.
이걸 통해 최소한 g(x)가 불연속점이 2개라는 합리적인 생각을
할수 있어야한다.
(왜냐하면 f(x)의 극값이 모두 다르기 때문에 극소가 0인 경우는 많아야 하나이다.)
따라서 a=0.5로 고정된 상태임을 안다.
이제 나머지 감별은 계산
추상도가 높은 삼사차함수, 미적분 문제를 풀기 위해서는
이 과정을 숙달하는 것이 중요하다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
직탐이랑 제2외국어는 왜 안 올려줌? 여기도 시간이랑 문항수 출제과목 바뀌잖아 ㅡㅡ
-
숭실 경영 입결 0
백분위 어느정도면 안정으로 갈 수 있나여??
-
레넥톤이 떡상하네 ㅋㅋ
-
면전에서 너 여기 동아리 왜 들어왔냐 얘기듣고 에타에서 이틀에 한 번 저격먹어보고...
-
범준이형!!
-
분명 킬러급은 없는데 2페부터 계산압박이 말이안됨 결국 4페 도달도 쉽지가 않음
-
나니가스키 3
초코민또 요리모 아나타
-
갑자기 궁근해졌는데 수능 끝나고 졸업까지 2달이나 남던데 이때 보통 뭐함?? 어디 야외활동도 가나
-
4덮 수학 5
75~80이면 무보 3 가능할까요?
-
카나토미의 미래 1
1. 개강을 한다 2. 강의가 레전드로 밀린다 스블 확통 : 마지막 업로드 2/19...
-
정병 이게 참 복잡하다고 느껴지네 저는 제 우울증 원인의 7할이 좋은 대학...
-
국어 풀만한거 1
지금 tim 듣고 매월승리도 계속 풀고 있는데 tim이나 허슬 없는 날은 풀게...
-
코인할건 아닌데 0
코인 유튜브가 너무 재밌음
-
닉값 ㄹㅈㄷ 9
아리따울 나 빛날 경
-
초딩때 들었을때는 분명 경쾌한 동요였는데 다시 들으니 뭔가 좀 슬프네.....
-
근데 어디서 봄
-
일클 바탕모 안 풀면 하루에 최소 1강씩 듣는다면 몇주 컷 가능??? 1
후딱 끝내고 현강 따라가고싶은뎅
-
높은 확률로 환경이 사람을 만든다...
-
시험 공부 제대로 안하고 있다는게 너무 불편하네 뭔가 더 많이 했어야했는데라는...
-
머야 3
퍼즐 좀 쉬운데
-
개인적으로 교육청 문제중에서 참신하고 발상 좋은 문제 되게 많았고(다 풀어본건...
-
똥먹기 7
미소녀 똥 우걱우걱
-
bxtre.kr/
-
이렇게 생겼으면 좋겠다
-
뭐지 그 자연물 묘사하는 대목이었는데 에메랄드 어쩌구 하면서 되게 어려운...
-
이제는 내가 만나고싶은사람만 만날 수 있다는거같음
-
여친 인증시키고 그걸로 덕코모아서 무한 덕코 만들 수 있음
-
지금부터 고민해야 맛있게 먹을 수 있음
-
그럼 내가 못보거든 문학만 핵불로 나오거라~~
-
재수생인데 유튜브나 커뮤 같은 걸 안 하면 뭔가 답답하고 불안해여 가끔씩 하는 건...
-
ㅇㅈ 8
-
국정원 문학 좋나요? 문학 독해틀을 만들어주는건가
-
라면끓이는중 7
힝 오늘밤도 망햇군..
-
설마 아무쓸모도 없진 않겠죠
-
특히 암기하는게 너무 어렵다 수능공부는 어케 했지 싶음,,
-
롱폼 보기 힘드네
-
오르비 2
굿나잇
-
슬슬 확통도 해야되는데 13
하기 존나 싫음; 진짜 개노잼임
-
선택자수 제일 많은 이유는 뭔가요? 얘기만 들어보면 제일 하면 안되는 과목이 생윤같은데
-
고2이고 학원에서 한번 돌렸는데 중딩때라 잘 기억이 안납니다 시발점을 들으려 하긴...
-
f'(0)+f'(3)=0 f'(x)≤0 on (-inf,3] ••• ㄱ...
-
내신에서 사탐은 선택 안해서 완전 쌩노배인데 진짜 뭐하지..? 정법 사문이 좀...
-
한15시간 하면될듯 내일 지금 치킨이 너무먹고싶음
-
나정도면 옯아싸 4
댓글없는 글이 복제가 된다고!!
-
2019년에 처음 듣고나서 부터 계속 듣는중 그래도 수능보단 덜 오래되었넹
-
~~
-
ㅈㄱㄴ
-
(롤만하며)
-
이러면 잘못을 나에게서 찾아야함? ㅋㅋㅋ
와우
작년 5모가 ㄹㅇ 만점자 적은 시험지라 인상깊었던 기억이 나네요.. 20번인가?에서 극대점이랑 접점 헷갈려서 많이들 틀렸던거같은..
그건 7모입니당
글쿤요 ㅎㅎ
(가)조건을 보고 f(x)>=0이고 g(x)의 우미분계수>=0이면서 g(x)의 임의의 실수 x에서의 우극한이 함숫값과 같다고 직관?으로 판단한 느낌인데..
길게 봤을 때 위험한 풀이려나요ㅠㅠ
아뇨