[칼럼] 결론부터 시작하는 다항함수 생활
게시글 주소: https://orbi.kr/00072651243
어려운 문제는 아니지만 계산량이 많았던 3월 12번
해설지에도 나온 정석적인 풀이법은 임의의 접선의 방정식을 구한 다음
해당 접선이 원점을 지난다는 사실을 이용하는 것인데
이는 문제에서 제시해준 순서대로
'원점 O에서 접선을 그었으니 접선의 방정식을 만들어서 x=0, y=0을 대입해야지'
라는 사고 과정을 밟아서 푼 것이라 할 수 있습니다
그런데 사고를 조금만 비틀어보면
'어차피 접선은 원점을 지나는거고, f에서 저 접선을 빼면 중근을 가지는 3차함수 아닌가?'
라고 결론에서부터 다항함수를 바라보면
의 과정을 통해 좀 더 간단하게 접점을 찾을 수 있습니다.
그리고 이번 3월에서는 이걸 써먹을 문제가 하나 더 있는데 그 전에
이 문제를 찬찬히 살펴보고 갑시다
이 문제도 위의 12번의 해설지 풀이처럼 도함수 찾고 접선의 방정식 만들어서 풀어도 되지만
앞서 언급한 결론에서부터 바라보기를 사용한다면
이렇게 계산을 상당히 단축할 수 있습니다
그러면 이 문제에서도 비슷하게 써먹으실 수 있을겁니다
문제 내부의 조건을 파해치면
가 되므로 접선을 움직이다보면 -1과 3에서 공통 접선이 생겨야 함을 직감할 수 있습니다.
그렇다면
이렇게 결론부터 식을 만들어가는 방법으로 계산을 상당히 단축할 수 있습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전 후 흠... 지피티로 이런 거 됨?
-
퇴근하고 오르비하는중
-
논술을 해야하나 1
어짜피 할꺼면 빨리 시작하는게 낫지 싶으면서도지금 딱 현상황으로는 할 생각이 아예...
-
나중에 다시 올리긴 그렇고.. 걍 알아서 읽을 사람은 읽겠지
-
개허수라 죄송합니다...
-
ㅇㅅ빔 2
뷰르릇
-
문제풀때 유용하게 사용됩니다.
-
나보다 팔로워 적은거보니까 짭이네 ㅡㅡ
-
으으읏 근 하지마~~
-
가보자기
-
안녕하세요 물괴물괴입니다. 오늘은 제가 현역정시설의를 쟁취할 수 있었던 가장 큰...
-
.
-
나쁘지 않을지도..
-
?
-
긴 막대자석을 원형 도선에 넣었다 뺐다 반복해서 전류를 탄생시키는게 뭔가뭔가임
-
자야지 3
-
빨리 피램 쌤도 2D화해줘이
-
어떻게 되냐
-
개인적으로 담요단이고 대수학이나 역학에 거부감이 있더라도 공대를 가는 게 현재의 대한민국에선 맞다고 생각함. 1
일단 출산율이 0.75인데 이것부터 답이 없음. 지금 태어나는 애들은 나중에...
-
난이도 좀 있는 문제집 추천해주세요~
-
심심하면 0
할거를 찾아 세상에 얼마나 할거가 많은데 심심할 이유 하나도없음
-
담요단이네 키타짱
-
힘 다 빠졌어 13
만우절 컨셉 끝
-
계정복구했다 4
-
족발 안와서 일단 다른거부터 먹을려고함
-
속보) 심찬우 쌤이 초 카와이 안경 존잘남이 됐다? 3
헉 캬~
-
아가 자야지 4
모두굿밤
-
ㄱㄱ혓.
-
재수해서 홍대 전전 붙엇는데 만약 1년투자해서 (아마 반수할거 같습니다,,) 중시경...
-
저격합니다. 6
저 격해요....♡
-
국립대라 그런지 학비가 저렴한 건 좋네요.
-
ㅈㄱㄴ
-
실망
-
ㅁㅌㅊ?
-
졸리다 5
자러가볼게요
-
나도 댓 달아줘 나쁜 놈들아
-
잠 잘오는법좀 2
ㅈㄱㄴ
-
어떤것도 질문받는다 해
-
대머벨
-
나무위키 읽는데 재밌네요
-
네페 대란 12시 직후부터 몇 분에 하나씩 쓰고 있는 놈
-
정사하다 병걸림 1
트위터까지 하면 안되는거였는데 ㅠ
-
얘들아 지금이야 26
어서 고백해
-
워 씌 쭝궈런 0
해킹했다 해
-
쌀먹이 먼 뜻임 9
나만 모르나
-
선착순 4명 12
1000덕
-
뭔가통계가많아서애들좀힘들어할줄알았는데 10번실수한내가참부끄럽네 이거진짜2등급나올수준일까요
-
【단독】 서울대, 세종시 이전 검토… “빠르면 2030년부터 적용” 10
본문: 교육부와 서울대학교가 최근 논의 중인 **‘국립대 통합 및 지역 균형 발전...
왜 사차함수 빵댕이인지를 논증해보는걸 보충으로 해야죠
논술귀신 물럿거라