[이다정T] [2025년 3월 교육청 모의고사] _공통(1~22) / 확통(23~30) / 미적(23~30) 손풀이 및 사고과정
게시글 주소: https://orbi.kr/00072618423
2025년 고3 3월 모의고사_수학_공통(1~22번), 확통(23~30번), 미적분(23~30번) 손해설_by 이다정T.pdf
안녕하세요. 수능을 수능답게, 수학을 쉽게 보는 방법의 이다정T 입니다.
이번 3월 교육청 모의고사 시험을 치느라 모두 고생 많았습니다.
이번 2025년 3월 교육청 모의고사 손풀이를 올려드립니다.
개인적으로 조금 까다롭거나, 틀리기 쉬운 문제에 대해 간단히 설명하려고 합니다.
[아래 (*)를 표시한 문제 위주로 참고하시면 됩니다.]
(0) 예상 등급컷 (미적 / 확통)
1등급: 80 / 85
2등급: 69 / 73
3등급: 60 / 64
1) 수학1/수학2: 10번, 12번, 14번, 15번, 21번, 22번
(*) 10번 (수열의 합):
- 수열의 합에 대한 문제인데, 수열을 나열해보면 3개의 항씩 묶었을 때 합이 1이 되는 규칙이 있습니다. 이 문제가 어렵게 느껴진 학생은 주어진 조건을 이용해서 식을 작성하려고 한 경우라고 생각됩니다. 이 규칙을 통해서 식을 작성하기 보다는 선지 5개에 대해 대입을 하는 것이 가장 빠릅니다.
11번 (함수 개형 추론):
- 함수 개형이 두 가지가 나옵니다. a의 값에 따라 함수 개형을 두 개로 나누고 조건을 대입합시다.
(*) 12번 (접선 & 정적분의 활용: 넓이):
- 문제에서 f(x)를 주어줬기 때문에 적분해야하는 부분을 찾았다면 단순 계산으로 적분하는 것이 가장 좋습니다. 문제를 풀 때, 대칭성이나, 삼차함수 넓이 공식을 이용하면 좋겠다는 생각이 들지 않을 땐 단순 계산이 더 빠릅니다. 조금 더 특징을 살피면, 0~1 까지는 삼각형의 넓이를 빼주면 좋습니다. (풀이 참고)
13번 (삼각함수의 최대 & 최소):
- 함수 f(x)가 아는 함수와 모르는 함수로 주어졌는데, 모르는 함수는 a값이 양수인지, 음수인지에 따라서 개형이 다릅니다. 따라서 a>0, a<0 으로 케이스를 나누고 풀어봅시다.
(***) 14번 (정적분의 식 변형 & 공통접선 & 사차함수와 중근)
- 이 문제를 못풀었다면, 조건의 식을 변형하지 못했고, 그 이후엔 변형한 식을 해석하지 못했기 때문입니다. 식 변형을 통해 조건해석이 된 경우 사차함수 그래프를 그려보고, 문제에서 주어진 a의 범위를 경계로 식을 작성하시면 됩니다. a=-1, a=3에서 공통접선을 가져야하므로 비율관계를 이용한다면 조금 더 쉽게 문제를 풀 수 있습니다. (비율관계를 사용하지 않더라도, 큰 차이는 없습니다.)
(**) 15번 (지수함수와 로그함수의 점근선)
- 문제에서 주어진 '실수 전체의 집합에서 실수 전체의 집합으로의 일대일대응' 이라는 조건이 중요합니다. 이 조건과 지수함수, 로그함수의 점근선을 잘 생각하면서 관찰하면 쉽습니다.
20번 (삼각함수 도형의 활용)
- 문제에 @(세타)와 pi-@(세타)와 공통변을 이용해 cos법칙을 두 번 적용시키면 문제의 미지수 2개, 식 2개로 미지수의 값을 찾을 수 있습니다. (기출에 많이 나온 소재라서 기출을 여러 번 풀어보았다면 쉽게 해결했을 것입니다.)
(**) 21번 (수열의 귀납적 정의)
- 문제에서 주어진 a6 = 2 를 이용해서 a1 값을 구해야하므로 '역방향 추론'을 해야합니다. (역추적이라고 부르기도 함.)
- 다만, 10이 나왔을 때 주의해서 케이스를 나눠줍시다.
(***) 22번 (함수의 연속 & 미분 불가점의 후보 점 찾기)
- g(x)는 구간별로 정의된 함수이며, x>=0 일 때, 절댓값을 가지고 있는 함수입니다. 따라서 g(x)가 실수 전체의 집합에서 미분가능하기 위해서 '1) 경계에서의 연속성 확인, 2) 경계에서의 미분가능성 확인, 3) 절댓값에서의 미분가능성 확인'을 확인해야합니다.
- 따라서 x=0 에서 연속성과, 미분가능성을 확인한 후에 l 2x^2 -8 l 의 미분이 불가능한 점을 후보로 문제를 풀어나가면 됩니다.
- f(x)의 최고차항을 포함해서 미지수가 4개이므로 식 4개를 구하면 풀이를 할 수 있습니다.
2) 확률과 통계: 27번, 28번, 29번, 30번
(*) 27번 (중복조합 & 함수)
- 문제가 어렵지 않습니다. 이 문제를 틀린 학생은 문제의 조건을 보고 제대로 해석하지 않거나, 함수의 개수는 어렵다는 고정관념으로 문제를 넘어갔을 가능성이 큽니다.
- 문제의 (나) 조건의 x=3, x=6을 기준으로 (가) 조건을 같이 해석하면 f(3), f(6)이 어떤 값이 되어야하는지 찾을 수 있습니다. 이후에는 중복조합을 이용해서 구하시면 됩니다.
(**) 28번 (원순열 & 이웃)
- 문제의 난이도가 조금 높습니다. 원순열의 핵심은 '원순열을 깨는 것'입니다. 어떤 한 접시를 배치하는 순간 (배치하는 경우의 수는 1이고) 원순열이 깨집니다. 이후에는 일직선에 수가 놓여져 있듯 케이스를 나눠서 풀면 됩니다.
(*) 29번 (짝수, 홀수)
- 짝수의 개수에 따라 케이스를 나눠서 풀어야합니다. 단, 2와 6은 모두 소인수분해를 했을 때, 2를 한 개씩 가지고 있지만, 4의 경우 2를 2개 가지고 있음을 생각하면서 케이스를 나눠주시면 됩니다.
(**) 30번 (2025학년도 9월 평가원 30번 문항 유사)
- (나) 조건에 맞춰서 D와 E에 분배를 먼저 해주고, 이후에 A, B, C에 공을 분배해주면 됩니다. 같은 케이스로 분류가 되기 때문에 계산도 원활하게 할 수 있습니다.
- 문제가 2025학년도 9평 30번과 매우 유사합니다. 이 문제를 틀렸고, 다시 풀어서 맞췄다면, 2025학년도 9월 평가원 30번도 다시 풀어봅시다!
3) 미적분: 27번, 28번, 29번, 30번
(*) 27번 (삼각함수의 주기성과 규칙을 이용한 근사)
- 삼각함수의 주기를 먼저 구한 후에, 3안에 주기가 몇 개가 있어야 조건을 만족하는지 살펴봅시다.
- 이후에는 n -> INF (무한대)로 가고 있으므로, 적당히 규칙을 발견한 후에 근사를 시키면 됩니다.
(**) 28번 (극한으로 정의된 함수와 x=-1 에서의 함숫값 존재)
- 문제의 조건을 잘 읽으면서 g(x)를 구하시면 됩니다. (모든 실수 x에 대해서 g(x) 함숫값이 존재한다.) 또한, f(x)가 기함수이므로 이를 활용해서 그림을 그리고, 조건을 관찰하면 됩니다.
(***) 29번 (도형의 극한)
- 도형문제이므로, 풀 수 있는 방법은 많습니다. 저는 삼각함수의 덧셈정리를 알고 있으므로, 배각공식을 이용해서 문제를 해결했습니다. 이 외에도 여러 풀이 방법이 있습니다. 하지만, 어떤 방법으로 문제를 풀 든, 마지막에 계산은 처리할 줄 알아야합니다. 열심히 미지수를 세우고 풀어봅시다.
(***) 30번 (케이스 분류)
- 케이스를 분류해서 문제를 풀어나가야합니다. 1, 2, 3, ,,, 10 에서 극값을 3개 갖기 위해서는 몇 개의 케이스 밖에 없기 때문에 이를 찾아주시면 됩니다. 찾기 쉬운 방법은 소인수 분해를 이용해서 찾는 것입니다.
- 문제의 조건 중 '등비수열이 수렴'하기 때문에 0 < r < 1 을 고려하면서 (나) 조건과 같이 관찰합시다.
(4) 총평
: 고3에게는 문제의 난이도가 조금 높았을 수 있습니다. 방학동안 열심히 공부했지만, 생각보다 결과가 안나왔을 수 있습니다. 내신에 치우져진 공부를 하느라, 기출문제를 잘 살펴보지 않은 경우엔 1차 지필고사가 끝난 후에 열심히 기출문제를 살펴봅시다.
만약 내신에서 문제를 출제한다면,
- 확률과 통계: 24번, 25번, 26번, 27번, 29번 정도는 다시 살펴보면 좋습니다. (시간이 된다면, 28번, 30번도 다시 봅시다.)
- 미적분: 25번, 26번, 27번, 28번 정도는 다시 살펴보면 좋습니다. (시간이 된다면, 29번, 30번도 다시 봅시다.)
: N수생의 경우, 내가 어느 부분이 약한지, 어느 과목(수학1, 수학2, 확통, 미적) 중 어느 유형의 문제를 틀렸는지를 중심으로 어떤 과목이 부족했는지 살펴보면 좋습니다. 아직 유형별 학습이나 기출학습이 덜 된 경우가 많습니다. 문제를 풀고, 오답하면서 기출을 정리하고, 조건을 잘 정리해봅시다.
열심히 공부합시다. 이다정T입니다.
(추가: 1등급, 혹은 고득점을 목표로 한다면 2025년 3월 모의고사 기준)
- 공통문항 1번 ~ 22번: 30~35분 이내로 해결
- 미적분: 30~35분 이내로 해결
- 확률과 통계: 30분 이내로 해결하면 좋습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
겠냐고 ㅋㅋㅋ
-
현역이고 생윤 개념은 2회독했고 윤사는 2학년때 내신으로만하고 아직 제대로는...
-
ㄹㅇ?
-
부엉이어디갔어
-
작수는 화작 아다리로 4등급 컷 받았었능데 이번 3덮 70분쓰고 독서 두개 문학...
-
ㅈㄱㄴ, 내년이나 교육과정 바뀌었을때 들가보고 싶
-
2022년 7월 학력평가 생명과학2 해설강의 켰다가 깜짝 놀랐었음
-
오르비마크서버 3
진짜재밋겟다 현실에서는 친구 없어서 못 함.. 오르비언들이랑 하고싶어
-
이젠 제발 좀 하자... 전공이 있든 없든 2주는 해야지...
-
오르비언 사귀는 법 11
나는 안써먹어봄 1.오르비를 켠다 2.인증이 예쁜 여르비/ 잘생긴 남르비를 골라...
-
본인 연애보다 4
금테 다는게 더 빠를듯요...ㅠ
-
쌤 예뻐보여서 아무 강의 들어가서 강의 스타일좀 보려고 저 강의 14강 켰는데...
-
자러감 며칠~한달이따 재밋는썰들 뒤지게많이 갖고올게 딱대라
-
오르비 첫글 0
킬캠 80점이면 백분위 몇정도 가능할까요? 좋아요 0, 댓글 0
-
안경 잘바꾸신듯
-
이투스 정승제들으려고 해서 개때잡을 구매하였는데 아는 지인이 한완수 2025를...
-
당장의 감정에 너무 휩쓸리지 않아도 됩니다
-
나 매웠구나? 3
순해진거임 이게
-
이런거 알아도 되는 사람만 남았나 봄 걍 옆에서 하기도함
-
수2 적분 문제 4
1. 188 2. 191 3. 194 4. 197 5. 200
-
오르비에서 친구사귀고 남친/여친사귀는거 나쁘지않음 생각보다 외모도 다들 준수함
-
님들 그거 앎? 2
소화 안됐는데 자야될때는 왼쪽으로 누우면 배 덜불편함
-
내 첫글은 4
-
전부다 계삭하고 손필기 다 지워야지 시머인재가 고소때리기 전에 예전엔 개별적으로...
-
님들한테 얘기함 0
나 오르비 초창기때 여기서 이름털린적있음
-
기억이 안남 ㅅㅂ 진×*...
-
신상 털린거 3
이름 학교 반 동아리 사는곳 얼굴 나이 등등
-
사실 오르비가 부끄럽긴해
-
내첫글은 2
물리 질문글이었는데 고인물들이 막 몰려와서 알려주고감
-
한 명은 유튜버고 나머지는 다들 알거 같고 선배도 금테있고 참 인생 ㅈ됐노!
-
연재희 Evolved slave ll 절대현주해 강풀화1 힘들어하지마
-
왔을때부터 젖지대머리라고 씨부리진 않았구나
-
고고고고고
-
이상한 질문글이였음 호구지 호구
-
오호 0
지구과학 꽤 재밌네 근데 2단원은 너무 노잼인데
-
근본.
-
옯바 2
오늘은 정말 일찍 자야해요 내일 새벽 4시에 일어나야해서 흑흑
-
암산? 계산력?은 전보다 훨 좋아진거 같음..
-
맞팔구 10
-
'오르비'라는 커뮤가 부끄러운건가요? 지금까지의 활동이 부끄러운 건가요?
-
몰라 안세봄 일단 무한대발산쌉가능같음
-
이거 아시는 분 있으려나
-
진짜 ㄹㅇ 젖지프사보고 저건 뭐하는사람이지 프사 뭣같이 생겼네하고 오르비 들어왔는데...
-
나 알고있으면 오르비 한다는건데 ㅋㅋ
-
다음 그림과 같이 질량 2kg인 물체 A는 3m/s의 속력으로, 질량 1kg인 물체...
당신의 따쓰한 십일월을 응원합니다. - 이다정T
경쟁자의 따듯한 피가 흐르는 civil war ㄷㄷ