3모 수학 14번 설문 부탁드립니다 :)
게시글 주소: https://orbi.kr/00072608259
여기서 정적분 식을 변형하여 꼴을 만들고,
접선의 방정식을 유도해서 풀었는데요,
제 주위에서는 의견이 갈리더라고요.
저는 조금 발상적이라고 (2번) 생각하는데요,
오르비언 분들은 어떻게 생각하시나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
퇴근 2
근데12시제출 과제가있네
-
ㅈㄱㄴ 그당시 되게 어려웠데서요.. 대부분 1컷47이하로 잡은 게 기억나네요....
-
저를 싫어해주세요 22
매도해줘
-
11~14번 좀 확고히 다지고 싶은데 뭐 풀면 좋을까요? 기출은 끝냈고 대성만 있습니다!!
-
네
-
정확히는 이게 잘 작동할 수 있을까라는 의문이 있음 명백히 선호되는 학과가 있는...
-
오르비 호감도는 5
수학 실력에 비례한다 다들 goat 저는
-
사춘기와 성 빼고 난 정보통신 좋아함
-
지금 드릴드 절반정도 풀다가 기출 다시 풀고 있는데 제가 제대로 하고 있는지...
-
덕코 0
주세요
-
5모까지 츄릅함 7
-
6시까지만 공부하고 30분 자고1시간동안 학교 갈 준비->> 바로 학교 !!
-
나 좋아하는 사람 16
있을리가..
-
사야함? 후기보면당연한소리다 이런말도있어서..
-
병(신) ㅠㅠ
-
아 이틀간 접속 못했어
-
오르비 잘 있어요
-
아무도 나 안 좋아함 12
-
마스께라를 울려라 저분 ㅈㄴ호감임 근데 이유는 잘 모르겟다
-
흐음
-
AI 불법주정차 단속 시스템 생겼다는데 그래서 불법주차 요즘 덜 함? 어떰요
-
국어, 영어 독해하는데 시간 더 걸리던데 ㅅㅂ
-
공부 ㅇㅈ 6
샤인미 46문제풀었다
-
지인선 미쳤네 0
한회차 3개씩 나가면 ㄱㅊ한건가
-
고지자기.. 못 알아먹겠던데 시즌1 사서 할까요…?
-
걍 나가자 이계정 망했네 새로 시작하자
-
야식 1
개불과 광어회
-
ㅂㅂ 3
-
탈릅선언은 2
걍 하지말자 만화에서도 감동적인 이별후 다시 오면 그만큼 짜치고 뻘쭘한게없음
-
고구마님이 국어만드신 그런거처럼..
-
평소에도 댓글 잘 안 달리는데 없겠지 뭐....
-
GG
-
즉, 내가 싫어하는 오르비언은 오르비언이 아님
-
재밌어지는 법 2
중딩때는 머릿속이 드립으로 넘쳤어요 고등학교 올라오면서 적어지더니 자퇴하고 수능보고...
-
나 좋아하는 사람 모여라<<하면 진짜 아무도 안 올 듯 20
일단모여줘…
-
시대컨 질문좀요 2
이번 3모 적백인데 트러스 엑셀 둘다 사야함? 트러스는 쉽다는 말 있던데 잘 모르겠네용
-
인강 듣거나 빡집중으로 실모보는거 제외하면 무조건 들음
-
수학도 잘하지 인성 좋지
-
나 좋아하는 사람 26
모여라
-
기회 1번
-
욕구에충실한삶 1
일하고 돈벌고 그대로술값에쓰고 쳐자다가 다시일하러가고 존나 짐승 같다.. 공부해야하는데
-
수학풀때는 진짜 못참는데 그리고 공부안될때 음악틀고 사탐 수특 벅벅 풀면 그만한 힐링이 없음
-
수학 기출 0
스블 회독하면 따로 기출문제집 사서 안풀어도 되나여
-
요즘껀 어렵나 아직 18 19 20 기출임
-
ㄱㄱ
-
근데 난 슈퍼스타도 아닌데 왜
-
날 좋아하는 사람들을 내가 좋아하는거징
-
순수하게 분탕을 치기위해 오르비를 들어오는 ms들
-
첨알았당
-
ㅇㅇ
별 차이 없는거같긴 해요
1번이랑 2번 말씀하시는 건가요?
이게 발상이면
점심메뉴는 어캐 고르는겨
점심메뉴 고르기는 극악의 발상적인 문제 아닌가요?
그럼 그걸 어캐풀어요?
접선의방정식 안쓰는 풀이가 있는지 저도 고민 중이에요
지금으로썬 접선의방정식 안쓰는 풀이는 못 찾았습니다
접방이 아니라 미분계수로 처리해도 되나 흠
양변 t-a로 나누는 거 말씀이신가요?
적분 꼴이라 t-a로 나눌 수 없습니다 ㅠㅠ
부등식 한쪽으로 모는게 발상적이라고 생각하진 않는 입장이긴 해요
그부분이 의견이 많이 갈리더라고요
저는 풀때 양변 식변형을 생각 못하고 그냥 있은 그대로 해석해서 풀었는데 해설보니까 접선의 방정식형태로 푸는게 더 쉬워보이더라고요.. 처음풀때 이걸 발견 못해서 그냥 좌변은 f(x)-f(a)=g(x)라는 x=a에서 함수값이 0인 4차 방정식과 우변은 기울기가 f'(a)이고 x=a에서 함수값이 0인 1차식을 비교해서 x=a에서 함수값이 0으로 같고 기울기도 같은거 이용해서 어찌 저찌 풀어서 맞추긴했는데 처음풀때 식변형 생각못하고 좀 더 어렵게 풀어서 시간 좀 날린거 반성중입니다...
저도 한번 시도해봤는데 많이 꼬이더라고요 ㅠㅠ
다음에 더 잘보시면 됩니다!
저는 그냥 한쪽으로 다몰고 접방과 f의 차함수로 바라보고 부정적분함수가 증가함수다라고 풀었음요
한쪽으로 다 몰면 접방인게 안보일수가 없음
저는 처음에 문제 봤을 때, 부등식 좌변 f(a)만 우변으로 이항했거든요.
그 다음 f(x)와 접선의방정식으로 나눠서 생각했습니다.
아예 한쪽으로 다 몰아버리면 접선의방정식이라는 생각이 떠오르기가 쉽겠네요.
좋은 의견 감사합니다 :)