3모 수학 14번 설문 부탁드립니다 :)
게시글 주소: https://orbi.kr/00072608259
여기서 정적분 식을 변형하여 꼴을 만들고,
접선의 방정식을 유도해서 풀었는데요,
제 주위에서는 의견이 갈리더라고요.
저는 조금 발상적이라고 (2번) 생각하는데요,
오르비언 분들은 어떻게 생각하시나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아오 병신새끼
-
시대인재 리모델링이나 25서바 주요문항만 수록해둔 교재 같은거
-
자리가 비엇군 8
가석방은 없던것으루..
-
지역인재 메디컬 0
부산권 지역인재가 가능한데 국어 수학 성적을 올려야 해서 과탐보다는 사탐을 하는 게...
-
어휘 끝 수능편에 있는건 거의 다 외웠슺니다.(3~4회독 한 듯) 하이퍼까지는...
-
야스야스! 2
제목이 저따군데 왜 들어옴
-
개 시발 니 풀이 틀렸다고 열 번은 처말한 거 같은데 계속 병신같은 나누기 하네 시발
-
수학 96인줄 알았는데...
-
우리가 누구~?
-
누구 차단을 풀어볼까 19
가석방 시간이다
-
오뿌이들은 내가 특별히 위로 해드림
-
재수할때 집와서 한발 빼고 잠 안와서 폰보다가 5시간 자도 어찌어찌 몸은 굴러가는데 컨디션이 십창남
-
현재 이미지샘 커리 따라가서 미친개념 미친기분 엔티켓 2회독씩 했구 미적이 유독...
-
이런거 제외하면 나머지는 대부분 조건 해석 잘하면 몇줄안에 끝나나요? 공통기준이요...
-
그정도로 쌓여있던 적이 없었음..
-
난 후다지롱 10
꿈에서 300번 정도 해본듯
-
해고 엔딩
-
맞팔구 3
이래도 댓글 없고 안해주는게 퇴물된 나의 처지라는거임 ㅇㅇ
-
8.5 야미~
-
드립이겠죠..?
-
사랑이 무뎌진 건 아쉽지만 증오까지 같이 무뎌진 게 다행임
-
개추ㅋㅋㅋ 0
개추워ㅋㅋㅋㅋㅅㅂ
-
이거 진짜 같음 아무것도 안해도 옆에 있는 사람 죽이고 싶음
-
원래 커뮤니티 라는게 본인이 쓰고싶은 글 있으면 쓰고 그게 ㅈ같으면 안보면 되는데...
-
에휴 리플리노?
-
그냥 어감 자체로 뭔가 압도적이지 않음? 그냥 무서움
-
처음에 딱 페이지 넘기면 긴장되서 머리가 잘 안돌아가는데 언매 37번부터 푸는게 그나마 나을까요
-
헉
-
ㅈㄱㄴ
-
마이케미컬로맨스.. 한창 중2병 도졋을때 광적으로 좋아함
-
쉬기로 했네요
-
파테가좋다 4
더이상의 팔로워는 받지않겠다.
-
제가 평소 학교 다닐때는 야자까지 해서 저녁9시가 되면 끝나고 바로 스카를 가서...
-
https://youtu.be/hbFE-eL-23A?si=G1BDTbjLFTHg3d4...
-
일상생활이 불가능해짐
-
넵
-
너무 적어요 (대충 우는짤)
-
. . . . . . 원신 짭 같은 느낌 ㅇㅇ...
-
단원별로 나눠저있어서 특정 단원을 집중적으로 조질수있는 n제의 장점도 없고 2,3점...
-
세상에 나보다 병신이 많은걸 알게 해줌 정치성향,성별,나이 관계없이
-
와......진짜
-
영국의 데이식스같은 느낌 ㅇㅇ..
-
타인과의 X교는 7
잘 안하는 편이에요....나는 소중하니까
-
3모 질문 19
이문제를 보고 공통접선을 어떻게 떠올릴수 있는거에요?
-
난 대성마이맥 19패스가 이렇게 좋은 건지 몰랐지.. 0
걍 진작 사놓을걸 에휴 지금 너무 비싸져서 월 회원권 이런 걸로라도 사서 강의 들어야겠네
-
타인과의 비교는 30
단기적으로 자존심을 채우기에는 매우 효율적인 수단이지만 결국 전부 열등감으로...
-
예쁘려나
-
키 183에 존잘에 의대생에 금수저에 군필에 착한 남자어때 4
나야! 쪽지줘~~
별 차이 없는거같긴 해요
1번이랑 2번 말씀하시는 건가요?
이게 발상이면
점심메뉴는 어캐 고르는겨
점심메뉴 고르기는 극악의 발상적인 문제 아닌가요?
그럼 그걸 어캐풀어요?
접선의방정식 안쓰는 풀이가 있는지 저도 고민 중이에요
지금으로썬 접선의방정식 안쓰는 풀이는 못 찾았습니다
접방이 아니라 미분계수로 처리해도 되나 흠
양변 t-a로 나누는 거 말씀이신가요?
적분 꼴이라 t-a로 나눌 수 없습니다 ㅠㅠ
부등식 한쪽으로 모는게 발상적이라고 생각하진 않는 입장이긴 해요
그부분이 의견이 많이 갈리더라고요
저는 풀때 양변 식변형을 생각 못하고 그냥 있은 그대로 해석해서 풀었는데 해설보니까 접선의 방정식형태로 푸는게 더 쉬워보이더라고요.. 처음풀때 이걸 발견 못해서 그냥 좌변은 f(x)-f(a)=g(x)라는 x=a에서 함수값이 0인 4차 방정식과 우변은 기울기가 f'(a)이고 x=a에서 함수값이 0인 1차식을 비교해서 x=a에서 함수값이 0으로 같고 기울기도 같은거 이용해서 어찌 저찌 풀어서 맞추긴했는데 처음풀때 식변형 생각못하고 좀 더 어렵게 풀어서 시간 좀 날린거 반성중입니다...
저도 한번 시도해봤는데 많이 꼬이더라고요 ㅠㅠ
다음에 더 잘보시면 됩니다!
저는 그냥 한쪽으로 다몰고 접방과 f의 차함수로 바라보고 부정적분함수가 증가함수다라고 풀었음요
한쪽으로 다 몰면 접방인게 안보일수가 없음
저는 처음에 문제 봤을 때, 부등식 좌변 f(a)만 우변으로 이항했거든요.
그 다음 f(x)와 접선의방정식으로 나눠서 생각했습니다.
아예 한쪽으로 다 몰아버리면 접선의방정식이라는 생각이 떠오르기가 쉽겠네요.
좋은 의견 감사합니다 :)