서울시교육청은절댓값을좋아하는거같아요
게시글 주소: https://orbi.kr/00072556790
슬슬 3모 시즌 아닌가 하고 일정을 알아봤더니 3일 뒤인 3/26일이 시험이더라구요
서울특별시 교육청에서 주관하는 시험입니다.
현 수능 체제에서 한 해도 빠짐없이 3모 22번에는 절댓값을 이용한 문제가 나왔어요.
한 번 비주얼만 쭉 확인해볼게요.
2024년
2023년
2022년
2021년
이렇게 쭉 모아보니 정말 절댓값을 가지고 계속 문제를 만들고 있죠.
그래서 3일 뒤에도 22번에 절댓값이 나온다? 함부로 그런 예측을 하고 있는 것은 아닙니다.
작년 수능 22번에 수열이 나왔으니 더더욱 모르는 일이구요.
다만 이번 기회에 절댓값에 대해 팁을 드릴까합니다. 워낙 자주 나오는 주제인만큼요.
두 개의 팁을 드릴건데요,
1번은 초급자용이고 2번은 잘하는 분들도 배울 점이 있을 겁니다.
1. 절댓값이 포함된 극한
누구나 바로 납득할 수 있는 사실부터 시작해볼게요.
다항함수 f(x)에 대해 다음 극한값이 존재합니다.
f(x)는 (x-a)를 몇 개 가지고 있어야 할까요?
만약 f(x)가 x-a를 하나만 가졌다면
뭐 이런 식으로 표현할 수 있을텐데요 (단, p(a)는 0이 아님)
이때 p(x)앞에 있는
이 놈이 a 좌우로 값이 바뀌어버리는 트롤을 해버립니다.
a 왼쪽에서는 -1 이었다가, a 오른쪽부턴 1이죠.
그래서 f(x)한테 x-a를 하나 더 줘버려서, 최종 극한값을 0으로 만들어버려야 합니다.
다음 예시로 넘어갈게요.
얘는 어떨까요? 이 경우에는 3개가 필요할까요?
그렇지 않습니다.
x-a 제곱은 원래 항상 0이상인 놈이라, 절댓값을 붙이든 말든 의미가 없죠.
따라서 f(x)는 x-a 인수 2개만 가지고 있어도 충분합니다.
이 경우에는 x-a 인수 4개가 필요하겠네요.
3개만 있다면, 아까 예시처럼 x=a 좌우로 -1, 1이 바뀌어버리는 트롤을 합니다.
이 경우에도 x-a 인수 4개가 필요합니다. 절댓값이 있으나 마나죠.
이쯤이면 정리가 되셨을 것 같습니다.
이런 것들을 외우고 있다기보단 그냥 자연스럽게 떠올릴 수 있어야 합니다.
꼭 이런 꼴이 아니더라도 절댓값이 포함된 식은 어떻게든 작성될 수 있거든요.
아래 예제 문제 보겠습니다.
(가) 조건부터 해석해봅시다.
약간의 변형을 해주면...
이런 꼴이 되죠.
이번엔 f(x)가 x를 인수로 몇 개 가지고 있어야 할까요?
한개만 가지고 있어도 충분할 겁니다. f(x)=x라고 해보면, xf(x)는 x제곱이 되죠. 절댓값 풀어도 됩니다.
당연히 두 개 이상 가질 때에도 문제 없습니다.
이제 (나)조건을 보면, g(x) 미불점을 하나 만들어줘야 합니다.
일단 f(x)를 아무렇게나 그려보고, 문제점을 찾아봅시다.
일단 x=0에서는 문제가 없습니다. (가)조건 볼 때 이미 확인했죠.
반면 그 외의 두 근에서는... 둘 다 문제가 생깁니다.
f(x)가 근을 가지는 곳마다 g(x)가 미불이 되어버리죠. (0 빼고요.)
수정이 필요해보입니다.
그래서 0이외의 두 근을 중근으로 만들어줬더니, 이번엔 또다른 문제가 생깁니다.
이번엔 g(x)가 미불인 곳이 아예 없겠죠. 다른 경우를 떠올려야 합니다.
이처럼 0 중근 + 나머지 한 근으로 그린다면?
(가) (나) 조건 둘 다 충족합니다.
0에서 중근이어야 하는 이유는 (가)조건 때문이 아니라, (나) 조건 때문이라는 걸 이해하셔야 합니다.
또 다른 케이스는 없나 확인하기 위해 다른 접근도 해보겠습니다.
함수가 꼭 0을 지나야 할까요? 그러니까, g(x)가 미불인 곳을 0으로 만들어주면 어떨까요.
위 그림처럼
f(x)=(x-1)(x-1)(x-3) 을 생각해보면...
g(x)는 x=0에서 문제가 생기고, x=3에서도 문제가 생기네요.
포인트는, x=0 이외 구간에서는 전혀 문제가 없게 해줘야 합니다.
이러면 좋을 것 같네요.
삼중근을 줘버렸습니다.
답은 이렇게 2개입니다.
2. 절댓값이 포함된 함수 그리기
위 조건을 가지고 f(x)를 그려야 하는 상황입니다.
수식적으로 열심히 미분하고 이거저거 해도 괜찮지만...
사실 그림 몇 개만 슥슥 그려서 끝낼 수 있어요.
일단 왼쪽부터 그려봅시다.
x가 절댓값 밖에 있는 게 거슬리네요.
이때 삼차함수의 절댓값함수를 그린 뒤에 x를 곱해야겠다고 생각하지 마세요.
절댓값은 무시한 채로 일단
이 놈을 그린 뒤에, 부호만 따로 처리해주는겁니다.
이렇게요.
삼차함수가 x가 0보다 작은 곳에서만 뒤집어졌으니까,
전체 함수도 x가 0보다 작은 곳에서만 뒤집어주면 되겠죠.
지금까지 왼쪽 함수를 그렸습니다.
우린 f(x)가 궁금한거니까 양변을 미분 해야겠죠?
근데 수식적으로 가지 않을 겁니다.
왼쪽함수를 미분해줄 때 역시 그림만 보고 바로 도함수를 그릴 수 있습니다.
이렇게 되겠죠.
0, a, 2a 에서 x축 지나는 삼차함수 그린 뒤에 x가 음수인 부분만 뒤집어 준 셈입니다.
이걸 미분해서 아는 게 아니라, 그림 보면서 바로 그리는거에요.
이때 이 도함수의 최고차항 계수는 4배가 됨을 잊지 마세요.
사차함수 미분했으니 계수 쪽으로 4가 튀어나왔겠죠.
지금 그린 이 함수가
이 놈입니다. 왜냐면...
여기서 우변을 미분하면 (a-x) f(x)가 나오니까요.
그럼 아까 구한 그림
이 놈에서 (a-x)를 나눠준 그림이 f(x)겠죠.
(a-x)를 나누는게 헷갈리신다면,
(x-a)를 나눈 다음에, -부호 처리(함수를 x축 대칭) 해도 되겠습니다.
저는 방금 말한 방법으로 보여드릴게요.
우선 x-a로 나누면
이렇게 되겠죠.
이제 뒤집을게요.
드디어 f(x)를 그렸습니다.
이런 식으로 그림을 통해 바로 미분을 하고, 인수를 나누고, 절댓값 처리를 하고, 적분도 할 수 있어요.
익숙해진다면 정말 빨라질 겁니다.
절댓값이 있더라도 제가 방금 보여드린 것처럼 하면 됩니다.
참고로 이 문제는 2022년 3월 22번이었습니다.
저는 다음에 또 좋은 칼럼으로 찾아뵙겠습니다. 감사합니다.
#무민
0 XDK (+100,000)
-
100,000
-
ㅇㅇ?
-
어지럽네
-
ㅠㅠ
-
좀 더 큰거 없나
-
ㅇㅇ
-
미국/eu/일본및 자유세계->중국 러시아 잠비아
-
일의 순서와 목적을 구분 못하는 거랑 같은 듯. .. 브레인크래커 1강만 봐도...
-
ㄱㄴ?
-
실모 보관하심? 7
브릿지같은 하프모나 실모 오답만 하고 버림? 아니면 따로 보관해둠??
-
정답이 없는 분야에 대해 말 길어지면 결국 싸움남 ㅋㅋ 가족들이랑도 안함
-
1,2학년때 교과성적이랑 세특에 신경을 쓸려고 아예 공교를 안들었고 지금 고3인데...
-
평가원 #~#
-
이렇게 생각하는 몇몇 보이네 문재인 겪어보면 알겠지만 이런애들이 내란견보다 더 위험하긴함
-
잇올 6모 0
홈페이지 들어가서 보니까 신청 성공햇는데 문자는 왜 안 오지 원래 늦게 옴?
-
어디 간 거냐 ㅅㅂ... 버스에서 좀 볼라 했는데
-
루비짱 0
하이~ 나니가 스키?
-
그런가요?
-
팔릴거 같은데
-
점심 1
삼겹살+비빔면 개꿀맛
-
미궁속으로.... 난이도 업업 해서 22수능 어게인 가나?
-
이재명, 가천대 '이름도 모르는 대학' 발언 논란에 공식 사과 지난 4일 이재명...
-
국어 -25수능과 유사 수학-공통불 미적 약불 과탐-1컷 죄다 47로 맞춤 ㅇㅇ
-
안녕하세요. 제 상황은 전 에 적었듯이 약 한 달 전, 회사를 퇴직하고 본격적으로...
-
묘하게 성대 교표 닮음
-
다행이다 0
진짜 개쫄렸네
-
29수열이 300배 조음
-
보통 일단 그냥 넘기나? 아니면 다른 강의나 구글에서 찾아보고 그럼?
-
24수능 꽤 괜찮다 생각했는데 비상식적인 독서 난이도하락 눈알굴리기 테스트 문학...
-
가 잘맞는 거 같음. .... 처음엔 했던 소리 또 하면 머리에 쥐날 거 같은데...
-
ㅇㄷㄴㅂㅌ
-
야 이 의뱃들아 4
나도 의뱃 줘
-
강기원 어싸에 매일학습 무등비/삼도극/확률통계 5문항씩 들어있었고
-
???:수능의 정상화 실패
-
한완기 교사경이랑 정병호t n제 고민중인데 뭐가 더 나을까? 지금은...
-
사문 사설 추천 2
사문 사설 모고 추천해주세요 강k 사만다 좋다는데 의견이 너무 다양해서 뭘 먼저...
-
대병파산 간호법 싹다 통관데 윤통 탄핵하나로 그게 본전치기는 되냐 ㅋ
-
대륙남 보고왔는데 ㅈㄴ 충격이네
-
난 기트남어 힛
-
빅이벤트가 연속으로
-
먼 무등비 삼도극이여
-
6모 만점을 받아오면 바로 앞에서 ’드릴‘을 풀어도 뭐라 하지 않겠다 ㄷㄷ
-
버리고 92맞음
-
이제 진짜 해야되죠? 계속 유기했는디..
-
그냥 의대생들 다 재적시켜버리고 26 27 28 정시모집 확대 5
이재명은 합니다
-
대 재 명
첫 댓 빌립니다. 그동안 올린 모든 칼럼을 확인하고 싶으시다면
https://orbi.kr/00064989284/%EA%B7%B8%EB
로 이동하세요!
그럼 3모 22번은 절댓값 수열이네요
ㄷㄷ
좋은 글 감사합니다

절대값에 대해서 다시 한 번 생각해 봤어ㅇ ㅛ
ㅋㅋㅋ 감상평까지 적어주시고 감사합니다! ㅎㅎ두번째 그래프는 x가 분모가 있는데 g(x)가 0에서 정의가 되나요??
x=0인 상황은 양변을 x로 나누기 전에 봐야된건가요?
아마 연속인거 생각하고 만든거같음
x가 0일때 g(x)랑, x가 0이 아닐 때 g(x)로 나눠야 합니다.
다만 전자 케이스에 대해서는 굳이 더 볼 게 없습니다.
만약 x=0에서 미불이라면, 연속일 필요도 없으니까 아무렇게나 g(0)값을 잡으면 되구요
x=0에서 미가라면, 내가 연속 조건을 맞춰주기만 한다면 미가는 알아서 맞춰져있을테니 문제가 없습니다.
"알아서 맞춰져있을테니"에 대해 더 설명을 드리자면
f(x)가 사진과 같을 때 g(x)는 어떤지 생각해보겠습니다. xf(x)=x제곱 (x-3)제곱 같은 함수이고, 절댓값은 의미가 없죠. 그 다음에 x로 나누면 g(x)=x(x-3)제곱 을 구할 수 있습니다.
조심해야 할 건, 이건 x가 0이 아닐 때의 g(x) 식인겁니다.
그럼 g(0)=0이라고 설정해주기만 하면, 실수 전체 범위에서 g(x)를 미가로 정의할 수 있겠죠. 0에서 문제가 없게 잘 설정해줬으니까요.
이제 답이 되는 f(x)에 대해서도 직접 이걸 해보시면 됩니다. x=0일때는 따로 긴 계산할 것 없이, 알아서 맞출 수 있는 g(0) 함숫값이 존재한다는 걸 느끼면 됩니다
또 다른 케이스는 없나 확인하기 위해 다른 접근도 해보겠습니다.
함수가 꼭 0을 지나야 할까요? 그러니까, g(x)가 미불인 곳을 0으로 만들어주면 어떨까요. 부분에서
f(x) 그래프가 x=0을 지나지 않는 이유가 뭔가요?
(가)에서 f(x)는 x=0을 인수로 가진다는 결론을 도출하지 않았나요?
x=0에서 g(x)가 문제가 안 생기게 하려면, f(x)가 x=0 인수를 가져야 한다는 뜻입니다.
이후에 새로운 접근에서는, 아 애초에 x=0을 문제되는 포인트로 만들어줘도 되겠구나 라는 시각에서 접근한 것입니다.
사실 문제를 완전히 정갈하게 풀려면, 처음부터 이걸 나눴어야 했습니다.
1. g(x) 미불점이 x=0일때
2. g(x) 미불점이 x=0이 아닐 때
하지만 저는 시행착오를 겪어가며 문제를 푸는 과정을 보여드리고 싶어서 일부러 이렇게 했습니다. 의문점이 아직 남아있다면 편하게 다시 질문해주세요! ㅎㅎ
선생님 정말 감사합니다. 선생님 답변은 이해했습니다.
근데 x=0에서 g(x)가 미분 가능하려면, f(x)가 x=0 인수를 가져야 한다는 게 이해가 잘 안갑니다.
전 그림이랑 식을 통해, g(x)는 x=0-에서 -|f(x)|이고
x=0+에서 |f(x)|가 나오니 x=0에서 미분 가능이라고 판단했는데.
(가)식만 보고 f(x)가 x=0에서 인수를 하나 이상 가지면 g(x)가 x=0에서 미분가능하다는 논리가 이해가 안됩니다.
질문 너무 많이 해서 죄송합니다.
그림 그리기 전에 어떻게 식만 보고 파악할 수 있는지를 물어본 거네요. 너무 좋은 질문이에요!!
f(x)가 x를 하나 가지고 있다면, 절댓값 안에 들어있는 xf(x)는 x를 두 개 가진 셈이에요. x를 두 개 가졌다면, x=0 근처에서 부호가 뒤집히지 않겠죠? 절댓값 x제곱을 생각하셔도 되고, 절댓값 x제곱 (x-3) 같은 걸 생각하셔도 돼요.
결국 g(x)가 미불이 되려면 뾰족하게 뒤집혀야 하는데, f(x)에다가 x를 하나만 줘도 애초에 뒤집히지를 않으니 문제가 없는 겁니다!
참고로 f(x)에 x 인수를 2개준다면, 즉 xf(x)가 x 인수를 3개 가진다면 0 좌우로 부호가 뒤집히긴 하지만, 미계가 0이라서 뒤집혀도 여전히 미분가능인 것입니다
가형시절 3모 14번 개레전드였었는데
14번이 이정도수준인가 하고 좌절했었는데
대 무 민

오랜만이네요10모도 그런가요
3모 10모 출제진이 다른가
10모 22는 21년만 절댓값 들어가있네요

현여기 22번 꼭 맞추겠습니다
혀녀기 파이팅입니다늘 감사합니다

저야말로 감사합니다 ㅎㅎ 오랜만에 뵙네요다 아는 내용인데 리마인드 하니까 새롭네요 항상 잘 보고 있습니다 :)
성지순례왔습니다ㅋㅋ
진짜 나올줄은 ㅋㅌㅋㅋ
이거 다 읽고 이해 다 했는데 틀렸어용ㅎㅎ