최신 증명 Ver 2.2.2
게시글 주소: https://orbi.kr/00072493574
불완전성 정리
제1정리. 페아노 공리계를 포함하는 어떠한 공리계도 무모순인 동시에 완전할 수 없다. 즉 자연수 체계를 포함하는 어떤 체계가 무모순이라면, 그 체계에서는 참이면서도 증명할 수 없는 명제가 적어도 하나 이상 존재한다.
제2정리. 페아노 공리계가 포함된 어떠한 공리계가 무모순일 경우, 그 공리계로부터 그 공리계 자신의 무모순성을 도출할 수 없다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
명제논리의 일종인 NAND게이트의 조합으로 모든 논리를 구현가능하다
실제로 논리게이트로 이루어진 컴퓨터상의 프로그램으로 1차논리 및 고차논리 등등을 구현할수 있다
그리고,
명제논리는 완전성과 무모순성이 증명되어있다
명제논리의 무모순성을 증명하는 메타논리 역시 명제논리의 조합으로 구현할수 있다
즉, 명제논리의 무모순성은 명제논리 스스로로부터 증명될수 있다
명제논리로 모든 논리를 구현가능하고 명제논리가 완전하고 무모순이라면 모든논리는 완전하고 무모순이다
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제1정리에 대한 반박
"페아노 공리계를 포함하는 어떠한 공리계"= B
제1정리는
"B가 무모순인 동시에 완전할수 없다"고 한다
하지만 B는 명제논리로 구현할수 있고, 명제논리는 무모순이고 완전하다
따라서 "B는 무모순이면서 완전하다"
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제2정리에 대한 반박
제2정리는
"B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 없다" 고 한다
위에서
"B는 무모순이면서 완전하다"
"명제논리의 무모순성은 명제논리 스스로로부터 증명될수 있다"
B는 명제논리로 구현됨
따라서
"B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 있다" 가 됨
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
괴델의 문제
G="G는 증명불가능"
괴델은 "G가 증명불가능"함을 증명함
그런데 이는 G를 증명한것
G의 내용과 모순
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
공리의 실체
1. (A가 거짓->모순)->(A의 증명있음)
2. (A의 증명없음)->(A가 거짓 and 무모순)
3. (A는 공리)->(A의 증명없음)
4. (A는 공리)->(A가 거짓 and 무모순)
무모순=참
5. (A는 공리)->(A가 거짓)
6. (A가 참)->(A는 공리아님)
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
완전성 증명
1. (Not A->모순)->(A의 증명있음)
2. (Not A->모순)<->A
3. A->(A의 증명있음)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
첫 정답자 1000덕 드리겠습니다!
-
지방사는 고3입니다 ㅠㅜ 지방이라 시대인재나 러셀 같은 시스템을 잘 몰라서 오르비에...
-
좀없어보이나
-
프사 추천 좀 5
곧 닉변하는데 같이 바꾸게애니 프사로이쁜걸로
-
과제 끝 4
근데 내일이 1교시에요
-
치마 들추기! 7
꺄르륵
-
3모 특강 좀 5
요행을 바라는 중
-
흠..
-
물2를 안하니까
-
내신 물리 말하는 거 화학은 문제집이 너무 어려워 수특이라 계산이 크아악 요즘 국어...
-
작수 4 등급 미적대데 3개월만에 수능 공부 시작함 작년에는 현우진 커리 타다고...
-
하의실종에 6
흰 와이셔츠
-
님들 맘스터치 3
애드워드리 버거 맛있나요
-
시대 기출문제집 3
Vod로 들어도 주나요…?
-
사문 시작한지 2개월됐는데 1,2 틀로 46이면 ㅁㅌㅊ?
-
교복치마 이쁘네 7
그죠
-
그때도 사탐런 많이 햤을 수능인가요?
-
자칫하다간 다 풀어놓고 답에 답이없는 불상사가 생긴닷....!
아직도 살아있네
왜요
엄준식